The course "Advanced Probability and Statistical Methods" provides a deep dive into advanced probability and statistical methods, essential for mastering data analysis in computer science. Covering joint distributions, expectation, statistical testing, and Markov chains, you'll explore key concepts and techniques that underpin modern data-driven decision-making. By engaging with real-world problems, you’ll learn to apply these methods effectively, gaining insights into the relationships between random variables and their applications in diverse fields.
Advanced Probability and Statistical Methods
Dieser Kurs ist Teil von Spezialisierung Statistical Methods for Computer Science
Dozenten: Ian McCulloh
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Learn to analyze relationships between random variables through joint probability distributions and independence concepts.
Understand how to calculate and interpret expected values, variances, and correlations for random variables.
Acquire essential skills in conducting statistical tests, including T-tests and confidence intervals, for data analysis.
Explore the principles of Markov chains and their applications in modeling systems with memoryless properties and calculating entropy.
Kompetenzen, die Sie erwerben
- Kategorie: Joint Probability Analysis
- Kategorie: Statistical Inference
- Kategorie: Expectation Calculations
- Kategorie: Application of Limit Theorems
- Kategorie: Markov Chain Modeling
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2024
22 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 6 Module
This course provides a comprehensive overview of probability theory and statistical inference, covering joint probability distributions, independence, and conditional distributions. Students will explore expected values, variances, and key statistical theorems, including the central limit theorem. Hypothesis testing, regression analysis, and stochastic processes such as Poisson processes and Markov chains will also be examined. Through practical applications and problem-solving, participants will gain essential skills in data analysis and interpretation.
Das ist alles enthalten
2 Lektüren1 Plug-in
This module presents the joint distributions of multiple random variables, both discrete and continuous and introduces the concept of independence.
Das ist alles enthalten
9 Videos4 Lektüren5 Aufgaben1 Unbewertetes Labor
This module focuses on the expectation of a random variable and joint random variable. Students will solve problems using the linearity of expectation and identify when its application is inappropriate. We will also explore variance, covariance, and correlation.
Das ist alles enthalten
7 Videos3 Lektüren4 Aufgaben1 Unbewertetes Labor
This module will apply several limit theorems to solve problems to include the central limit theorem, the Markov inequality, and the Chebyshev inequality. We will also prove Murphy’s Law.
Das ist alles enthalten
9 Videos4 Lektüren5 Aufgaben1 Unbewertetes Labor
This module develops student proficiency in probabilistic models to include Markov chains. Students will be introduced to problems involving surprise, uncertainty, and entropy.
Das ist alles enthalten
4 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor
This module develops student proficiency in probabilistic models to include Markov chains. Students will be introduced to problems involving surprise, uncertainty, and entropy.
Das ist alles enthalten
8 Videos4 Lektüren5 Aufgaben1 Unbewertetes Labor
Dozenten
Empfohlen, wenn Sie sich für Probability and Statistics interessieren
University of Illinois Urbana-Champaign
Coursera Instructor Network
University of Colorado Boulder
Coursera Project Network
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.