This course covers advanced topics in R programming that are necessary for developing powerful, robust, and reusable data science tools. Topics covered include functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions. Upon completing this course you will be able to identify and abstract common data analysis tasks and to encapsulate them in user-facing functions. Because every data science environment encounters unique data challenges, there is always a need to develop custom software specific to your organization’s mission. You will also be able to define new data types in R and to develop a universe of functionality specific to those data types to enable cleaner execution of data science tasks and stronger reusability within a team.
Advanced R Programming
Dieser Kurs ist Teil von Spezialisierung Mastering Software Development in R
Dozenten: Roger D. Peng, PhD
31.737 bereits angemeldet
Bei enthalten
(573 Bewertungen)
Kompetenzen, die Sie erwerben
- Kategorie: Logic Programming
- Kategorie: R Programming
- Kategorie: Object-Oriented Programming (OOP)
- Kategorie: Functional Programming
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
3 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 7 Module
This course covers advanced topics in R programming that are necessary for developing powerful, robust, and reusable data science tools. Topics covered include functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions. Upon completing this course you will be able to identify and abstract common data analysis tasks and to encapsulate them in user-facing functions. Because every data science environment encounters unique data challenges, there is always a need to develop custom software specific to your organization’s mission. You will also be able to define new data types in R and to develop a universe of functionality specific to those data types to enable cleaner execution of data science tasks and stronger reusability within a team.
Das ist alles enthalten
1 Video3 Lektüren
This module begins with control structures in R for controlling the logical flow of an R program. We then move on to functions, their role in R programming, and some guidelines for writing good functions.
Das ist alles enthalten
17 Lektüren
Das ist alles enthalten
1 Aufgabe1 Programmieraufgabe
Functional programming is a key aspect of R and is one of R's differentiating factors as a data analysis language. Understanding the concepts of functional programming will help you to become a better data science software developer. In addition, we cover error and exception handling in R for writing robust code.
Das ist alles enthalten
19 Lektüren
Das ist alles enthalten
1 Aufgabe1 Programmieraufgabe
Debugging tools are useful for analyzing your code when it exhibits unexpected behavior. We go through the various debugging tools in R and how they can be used to identify problems in code. Profiling tools allow you to see where your code spends its time and to optimize your code for maximum efficiency.
Das ist alles enthalten
15 Lektüren1 Aufgabe
Object oriented programming allows you to define custom data types or classes and a set of functions for handling that data type in a way that you define. R has a three different methods for implementing object oriented programming and we will cover them in this section.
Das ist alles enthalten
11 Lektüren1 peer review
Dozenten
Empfohlen, wenn Sie sich für Data Analysis interessieren
Johns Hopkins University
Johns Hopkins University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 573
573 Bewertungen
- 5 stars
58,46 %
- 4 stars
22,33 %
- 3 stars
10,12 %
- 2 stars
2,79 %
- 1 star
6,28 %
Geprüft am 11. Feb. 2020
Geprüft am 17. Juli 2018
Geprüft am 22. Feb. 2017
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.