Johns Hopkins University
Computational and Graphical Models in Probability

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Johns Hopkins University

Computational and Graphical Models in Probability

Ian McCulloh
Tony Johnson

Dozenten: Ian McCulloh

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 15 Stunden
3 Wochen bei 5 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 15 Stunden
3 Wochen bei 5 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Master techniques for simulating random variables, including the Inverse Transformation and Rejection Methods using R programming.

  • Analyze complex networks using Exponential Random Graph Models to model and interpret social structures and their dependencies.

  • Understand and apply probabilistic graphical models, including Bayesian networks, to reason about uncertainty and infer relationships in data.

Kompetenzen, die Sie erwerben

  • Kategorie: Network Analysis
  • Kategorie: Data Visualization
  • Kategorie: Statistical Hypothesis Testing
  • Kategorie: Statistical Modeling
  • Kategorie: Random Variable Simulation

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Oktober 2024

Bewertungen

8 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Statistical Methods for Computer Science
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

This course covers advanced techniques in network and probabilistic modeling, including simulation methods, exponential random graph models, and probabilistic graphical models. You will gain practical skills in analyzing complex systems and relational data.

Das ist alles enthalten

2 Lektüren1 Plug-in

This module develops student proficiency in simulating random variables for arbitrary density functions. Students will be introduced to the Inverse Transformation Method and the Rejection Method.

Das ist alles enthalten

4 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor

Exponential Random Graph Models introduce the use of exponential random graph models (ERGMs) for network analysis. You will learn how to model and interpret complex social and relational structures.

Das ist alles enthalten

2 Videos2 Lektüren2 Aufgaben1 Unbewertetes Labor

This module introduces a framework for encoding probability distributions over complex joint domains over large numbers of random variables that interact with one another. Students will become familiar with probabilistic graph model applications to many machine learning problems.

Das ist alles enthalten

5 Videos2 Lektüren3 Aufgaben

Dozenten

Ian McCulloh
Johns Hopkins University
17 Kurse947 Lernende

von

Empfohlen, wenn Sie sich für Probability and Statistics interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen