Artificial intelligence (AI) and machine learning (ML) have the potential to increase diagnostic accuracy, decrease diagnostic errors, and improve patient outcomes. The Data Augmented, Technology Assisted Medical Decision Making (DATA-MD) course will teach you how to use AI to augment your diagnostic decision-making. The National Academy of Medicine (NAM) recommends ensuring that clinicians can effectively use technology - including AI - to improve the diagnostic process. To use these technologies effectively in your clinical practice, you will need to determine when use of AI is appropriate, interpret the outputs of AI, read medical literature about AI, and explain to patients the role that AI plays in their care. In this course, you’ll explore the ethical considerations and potential biases when making medical decisions informed by AI/ML-based technologies. DATA-MD is a one of a kind curriculum designed to provide an introduction to the use of AI in the diagnostic process.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Empfohlene Erfahrung
Was Sie lernen werden
Describe the crucial role, strengths, limitations of AI and ML in evidence-based medical decision making
Evaluate machine learning studies for bias and systematic error to enhance diagnostic decisions.
Apply the results of machine learning studies and outputs to diagnostic decisions.
Identify legal and ethical issues and best practices for AI and ML use in healthcare settings
Kompetenzen, die Sie erwerben
- Kategorie: AI Law and Ethics
- Kategorie: AI for Diagnosis
- Kategorie: AI/ML Methodologies
- Kategorie: Medical Decision Making
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
18 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
In week 1, you will be introduced to artificial intelligence (AI) and machine learning (ML) and the vocabulary necessary to effectively communicate with relevant stakeholders. You will learn about some of the applications of AI/ML in healthcare and the challenges associated with using these technologies in healthcare.
Das ist alles enthalten
17 Videos6 Lektüren5 Aufgaben1 Diskussionsthema
In Module 2 you will learn the concepts and statistical measures necessary for interpretation of results of diagnostic studies that include ML.
Das ist alles enthalten
15 Videos3 Lektüren5 Aufgaben1 Diskussionsthema
In Module 3, you will develop the skills necessary to critically evaluate diagnostic studies that include AI/ML. This week emphasizes the skills necessary to efficiently and effectively use AI/ML to augment diagnostic decisions. step.
Das ist alles enthalten
14 Videos3 Lektüren2 Aufgaben1 Diskussionsthema
In the final Module of this course, you will review the current legal and ethical landscape of AI/ML in medicine, possible social biases that may be perpetuated by AI/ML algorithms, and recommendations for avoiding these.
Das ist alles enthalten
15 Videos4 Lektüren6 Aufgaben1 Diskussionsthema
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Johns Hopkins University
Northeastern University
The State University of New York
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.