Sequential Decisions builds from math and algorithms that can be understood and used by Coursera Students. This course will start from a consideration of the simplest type of data streams and then gradually advance to more complex types of data and more nuanced decisions being made on that data. You will be able to: (a) program optimal decisions for data arriving from known distribution functions, (b) define error bars and nuanced hedges about ongoing data streams to reflect missing data and/or missing knowledge, (c)understand and use the connections from these models to further understand Markov Chains and Markov Processes and how these ideas connect to Reinforcement Learning and (d) Understand better the nuances between time-independent, time-dependent, one-dimensional and multi-dimensional data.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Data Science Decisions in Time: Using Data Effectively
Dieser Kurs ist Teil von Spezialisierung Data Science Decisions in Time
Dozent: Thomas Woolf
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
By the end of the course you will: (1) understand sequential testing and thus when to stop collecting data and (2) how this concept is used today.
Kompetenzen, die Sie erwerben
- Kategorie: Control Chart
- Kategorie: Testing for Vaccines
- Kategorie: Wald's ideas for stopping
- Kategorie: A:B testing
- Kategorie: working with sequential data
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
August 2024
11 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
This module introduces the class and the approach to teaching it to be used for the next five weeks. We begin with simple sequential data, similar to Wald’s model: data arrives from a distribution and is not time dependent. This can be generative data. We then explore increasingly complex data from distributions collected for health or business reasons. We finish the week with connections to code work and to AI.
Das ist alles enthalten
5 Videos2 Lektüren2 Aufgaben1 Diskussionsthema
This module is the bridge into Markov Processes and Markov Chains. Thompson sampling is an old algorithm, that has been revived and is currently in-use on many challenging problems. By understanding this material and the connections to last week and to the week ahead, students will be well positioned to have mastered this first course in the specialization
Das ist alles enthalten
3 Videos1 Lektüre2 Aufgaben1 Diskussionsthema
Change points are locations where the previously stationary distributions of the last two modules shift to a new distribution In a manufacturing line this could be due to a new batch of materials that arrive with different characteristics, so the failure rate changes.
Das ist alles enthalten
2 Videos1 Lektüre2 Aufgaben1 Diskussionsthema
Markov chains describe a sequence of state changes. They are often used to describe complex transitions between states and are a primary modeling tool for improving understanding of a complex system. We will use them as a model for how sequential data may be produced by a more complex system.
Das ist alles enthalten
3 Videos1 Lektüre2 Aufgaben1 Diskussionsthema
The next step in modeling ability is Markov processes with decisions. This connects to modern research in reinforcement learning and enables optimization over the sets of decisions for an optimal outcome. In this last week of the first course we will cover the basics of how these Markov Decision Processes can be parameterized and what they mean.
Das ist alles enthalten
2 Videos1 Lektüre3 Aufgaben1 Diskussionsthema
Dozent
Empfohlen, wenn Sie sich für Data Analysis interessieren
Johns Hopkins University
Banco Interamericano de Desarrollo
Johns Hopkins University
Johns Hopkins University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.