Delve into the two different approaches to converting raw data into analytics-ready data. One approach is the Extract, Transform, Load (ETL) process. The other contrasting approach is the Extract, Load, and Transform (ELT) process. ETL processes apply to data warehouses and data marts. ELT processes apply to data lakes, where the data is transformed on demand by the requesting/calling application.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
ETL and Data Pipelines with Shell, Airflow and Kafka
Dieser Kurs ist Teil mehrerer Programme.
Dozenten: Jeff Grossman
49.605 bereits angemeldet
Bei enthalten
(363 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Describe and contrast Extract, Transform, Load (ETL) processes and Extract, Load, Transform (ELT) processes.
Explain batch vs concurrent modes of execution.
Implement ETL workflow through bash and Python functions.
Describe data pipeline components, processes, tools, and technologies.
Kompetenzen, die Sie erwerben
- Kategorie: Extract Transform and Load (ETL)
- Kategorie: Data Engineer
- Kategorie: Apache Kafka
- Kategorie: Apache Airflow
- Kategorie: Data Pipelines
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
11 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
ETL or Extract, Transform, and Load processes are used for cases where flexibility, speed, and scalability of data are important. You will explore some key differences between similar processes, ETL and ELT, which include the place of transformation, flexibility, Big Data support, and time-to-insight. You will learn that there is an increasing demand for access to raw data that drives the evolution from ETL to ELT. Data extraction involves advanced technologies including database querying, web scraping, and APIs. You will also learn that data transformation is about formatting data to suit the application and that data is loaded in batches or streamed continuously.
Das ist alles enthalten
7 Videos2 Lektüren2 Aufgaben1 Plug-in
Extract, transform and load (ETL) pipelines are created with Bash scripts that can be run on a schedule using cron. Data pipelines move data from one place, or form, to another. Data pipeline processes include scheduling or triggering, monitoring, maintenance, and optimization. Furthermore, Batch pipelines extract and operate on batches of data. Whereas streaming data pipelines ingest data packets one-by-one in rapid succession. In this module, you will learn that streaming pipelines apply when the most current data is needed. You will explore that parallelization and I/O buffers help mitigate bottlenecks. You will also learn how to describe data pipeline performance in terms of latency and throughput.
Das ist alles enthalten
5 Videos4 Lektüren4 Aufgaben1 App-Element1 Plug-in
The key advantage of Apache Airflow's approach to representing data pipelines as DAGs is that they are expressed as code, which makes your data pipelines more maintainable, testable, and collaborative. Tasks, the nodes in a DAG, are created by implementing Airflow's built-in operators. In this module, you will learn about Apache Airflow having a rich UI that simplifies working with data pipelines. You will explore how to visualize your DAG in graph or tree mode. You will also learn about the key components of a DAG definition file, and you will learn that Airflow logs are saved into local file systems and then sent to cloud storage, search engines, and log analyzers.
Das ist alles enthalten
5 Videos1 Lektüre2 Aufgaben4 App-Elemente1 Plug-in
Apache Kafka is a very popular open source event streaming pipeline. An event is a type of data that describes the entity’s observable state updates over time. Popular Kafka service providers include Confluent Cloud, IBM Event Stream, and Amazon MSK. Additionally, Kafka Streams API is a client library supporting you with data processing in event streaming pipelines. In this module, you will learn that the core components of Kafka are brokers, topics, partitions, replications, producers, and consumers. You will explore two special types of processors in the Kafka Stream API stream-processing topology: The source processor and the sink processor. You will also learn about building event streaming pipelines using Kafka.
Das ist alles enthalten
4 Videos1 Lektüre2 Aufgaben3 App-Elemente1 Plug-in
In this final assignment module, you will apply your newly gained knowledge to explore two very exciting hands-on labs. “Creating ETL Data Pipelines using Apache Airflow” and “Creating Streaming Data Pipelines using Kafka”. You will explore building these ETL pipelines using real-world scenarios. You will extract, transform, and load data into a CSV file. You will also create a topic named “toll” in Apache Kafka, download and customize a streaming data consumer, as well as verifying that streaming data has been collected in the database table.
Das ist alles enthalten
4 Lektüren1 Aufgabe1 peer review3 App-Elemente
Dozenten
von
Empfohlen, wenn Sie sich für Data Management interessieren
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 363
363 Bewertungen
- 5 stars
70,02 %
- 4 stars
17,16 %
- 3 stars
7,08 %
- 2 stars
2,99 %
- 1 star
2,72 %
Geprüft am 23. Apr. 2022
Geprüft am 31. März 2023
Geprüft am 12. Juli 2023
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.