In a world where data-driven insights are reshaping industries, mastering the foundations of machine learning is a valuable skill that opens doors to innovation and informed decision-making. In this comprehensive course, you will be guided through the core concepts and practical aspects of machine learning. Complex algorithms and techniques will be demystified and broken down into digestible knowledge, empowering you to wield the capabilities of machine learning confidently. By the end of this course, you will:
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Foundations of Machine Learning
Dieser Kurs ist Teil von Fractal Data Science (berufsbezogenes Zertifikat)
Dozent: Analytics Vidhya
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Construct Machine Learning models using the various steps of a typical Machine Learning Workflow
Apply appropriate metrics for various business problems to assess the performance of Machine Learning models
Develop regression and tree based Machine learning Models to make predictions on relevant business problems
Analyze business problems where unsupervised Machine Learning models could be used to derive value from data
Kompetenzen, die Sie erwerben
- Kategorie: Logistic Regression
- Kategorie: Unsupervised Learning
- Kategorie: Data Pre-Processing
- Kategorie: Linear Regression
- Kategorie: Decision Tree
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
12 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihr Fachwissen im Bereich Data Analysis
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Fractal Analytics zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 6 Module
In this module, learners will unravel the magic of machine learning as they explore the significance of making predictions in various domains. They will gain a solid introduction to machine learning and its applications in different industries. The module will also cover essential concepts such as rule-based prediction and evaluation metrics, providing learners with a strong foundation for the rest of the course.
Das ist alles enthalten
10 Videos2 Lektüren1 Aufgabe1 Diskussionsthema
This module focuses on guiding learners through the complete workflow of building their first machine learning model. Learners will dive into data preparation, exploratory data analysis (EDA), and feature engineering techniques. They will learn to build a K-Nearest Neighbors (KNN) model, understand model evaluation, and explore crucial considerations for deploying an ML model in real-world applications.
Das ist alles enthalten
19 Videos2 Aufgaben1 Programmieraufgabe
In this module, learners will delve into the intricacies of prediction models. They will explore evaluation metrics for both regression and classification models, gaining hands-on experience with practical implementations. The module will also cover data division techniques and benchmark performance, providing learners with a comprehensive understanding of how to effectively evaluate prediction models.
Das ist alles enthalten
10 Videos2 Aufgaben1 Programmieraufgabe
In this module, learners will embark on a comprehensive exploration of regression techniques. From understanding the principles of linear and logistic regression to their practical application, they will gain valuable insights into predictive modeling. With a focus on real-world scenarios, they will learn how to make predictions, interpret results, and optimize models.
Das ist alles enthalten
13 Videos3 Aufgaben1 Programmieraufgabe
In this module, learners will navigate the intricate paths of decision trees. Decision trees offer a transparent yet powerful approach to classification and regression tasks. Learners will delve into the mechanisms of decision tree construction, learn to handle overfitting through pruning and regularization, and discover the art of fine-tuning decision trees for optimal results.
Das ist alles enthalten
10 Videos2 Aufgaben1 Programmieraufgabe
In this module, learners will unlock the mysteries of unsupervised machine learning as they dive into clustering techniques. They will discover the power of KMeans and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) in grouping similar data points together. They will also explore how unsupervised learning revolutionizes data exploration, customer segmentation, and anomaly detection.
Das ist alles enthalten
11 Videos1 Lektüre2 Aufgaben1 Programmieraufgabe
Dozent
Empfohlen, wenn Sie sich für Data Analysis interessieren
University of Washington
DeepLearning.AI
CertNexus
Alberta Machine Intelligence Institute
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.