This IBM course will teach you how to implement, train, and evaluate generative AI models for natural language processing (NLP). The course will help you acquire knowledge of NLP applications including document classification, language modeling, language translation, and fundamentals for building small and large language models.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Gen AI Foundational Models for NLP & Language Understanding
Dieser Kurs ist Teil mehrerer Programme.
Dozenten: Joseph Santarcangelo
1.988 bereits angemeldet
Enthalten in
(24 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Explain how to use one-hot encoding, bag-of-words, embedding, and embedding bags to convert words to features.
Build and use word2vec models for contextual embedding.
Build and train a simple language model with a neural network.
Utilize N-gram and sequence-to-sequence models for document classification, text analysis, and sequence transformation.
Kompetenzen, die Sie erwerben
- Kategorie: N-Gram
- Kategorie: PyTorch torchtext
- Kategorie: Generative AI for NLP
- Kategorie: Word2Vec Model
- Kategorie: Sequence-to-Sequence Model
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 2 Module
In this module, you will learn about one-hot encoding, bag-of-words, embeddings, and embedding bags. You will also gain knowledge of neural networks and their hyperparameters, cross-entropy loss, and optimization. You will then delve into the concept of language modeling with n-grams. The module also includes hands-on labs on document classification with PyTorch and building a simple language model with a neural network.
Das ist alles enthalten
7 Videos4 Lektüren3 Aufgaben2 App-Elemente1 Plug-in
In this module, you will learn about the word2vec embedding model and its types. You will also be introduced to sequence-to-sequence models and how they employ Recurrent neural networks (RNNs) to process variable-length input sequences and generate variable-length output sequences. You will gain insights about encoder-decoder RNN models, their architecture, and how to build them using PyTorch. The module will give you knowledge about evaluating the quality of text using perplexity, precision, and recall in text generation. In hands-on labs, you will integrate pre-trained embedding models for text analysis or classification and develop a sequence-to-sequence model for sequence transformation tasks.
Das ist alles enthalten
6 Videos4 Lektüren2 Aufgaben2 App-Elemente3 Plug-ins
von
Empfohlen, wenn Sie sich für Machine Learning interessieren
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
It will take only two weeks to complete this course if you spend four hours of study time per week.
It will be good if you have a basic knowledge of Python and a familiarity with machine learning and neural network concepts.
PS: Data set preprocessing/cleaning is not covered in this course.
This course is part of a specialization. When you complete the specialization, you will prepare yourself with the skills and confidence to take on jobs such as AI Engineer, NLP Engineer, Machine Learning Engineer, Deep Learning Engineer, and Data Scientist.