This is the third of seven courses in the Google Advanced Data Analytics Certificate. In this course, you’ll learn how to find the story within data and tell that story in a compelling way. You'll discover how data professionals use storytelling to better understand their data and communicate key insights to teammates and stakeholders. You'll also practice exploratory data analysis and learn how to create effective data visualizations.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Go Beyond the Numbers: Translate Data into Insights
Dieser Kurs ist Teil von Google Advanced Data Analytics (berufsbezogenes Zertifikat)
Dozent: Google Career Certificates
TOP-LEHRKRAFT
57.212 bereits angemeldet
Bei enthalten
(683 Bewertungen)
Was Sie lernen werden
Apply the exploratory data analysis (EDA) process
Explore the benefits of structuring and cleaning data
Investigate raw data using Python
Create data visualizations using Tableau
Kompetenzen, die Sie erwerben
- Kategorie: Python Programming
- Kategorie: Effective Communication
- Kategorie: Tableau Software
- Kategorie: Data Visualization
- Kategorie: Exploratory Data Analysis
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
20 Quizzes, 1 Aufgabe
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihr Fachwissen im Bereich Data Analysis
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat von Google zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
You’ll learn how to find the stories within data and share them with your audience. You’ll learn about the methods and benefits of data cleaning and how it can help you discover those stories. You’ll also go over the steps of the EDA process and learn how EDA can help you quickly understand data. Finally, you'll explore different ways to visualize data to communicate key insights.
Das ist alles enthalten
8 Videos5 Lektüren2 Quizzes1 Aufgabe1 Plug-in
Finding stories in data using EDA is all about organizing and interpreting raw data. Python can help you do this quickly and effectively. You’ll learn how to use Python to perform the EDA practices of discovering and sculpting.
Das ist alles enthalten
9 Videos6 Lektüren4 Quizzes7 Unbewertete Labore1 Plug-in
You’ll explore three more EDA practices: cleaning, joining, and validating. You'll discover the importance of these practices for data analysis, and you’ll use Python to clean, validate, and join data.
Das ist alles enthalten
11 Videos6 Lektüren5 Quizzes5 Unbewertete Labore1 Plug-in
You’ll practice creating and presenting data stories in an ethical, accessible, and professional way. You'll also explore advanced data visualization techniques in Tableau.
Das ist alles enthalten
8 Videos11 Lektüren5 Quizzes1 Plug-in
In this end-of-course project, you’ll practice using Python to perform EDA on a workplace scenario dataset. Then, you'll use Python and Tableau to visualize the data.
Das ist alles enthalten
4 Videos10 Lektüren4 Quizzes6 Unbewertete Labore
Dozent
von
Empfohlen, wenn Sie sich für Data Analysis interessieren
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 683
683 Bewertungen
- 5 stars
82,13 %
- 4 stars
13,17 %
- 3 stars
2,19 %
- 2 stars
1,31 %
- 1 star
1,17 %
Geprüft am 22. Aug. 2023
Geprüft am 6. Feb. 2024
Geprüft am 27. Aug. 2024
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science and advanced data analytics are part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists and advanced data analysts rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
A data professional is a term used to describe any individual who works with data and/or has data skills. At a minimum, a data professional is capable of exploring, cleaning, selecting, analyzing, and visualizing data. They may also be comfortable with writing code and have some familiarity with the techniques used by statisticians and machine learning engineers, including building models, developing algorithmic thinking, and building machine learning models.
Data professionals are responsible for collecting, analyzing, and interpreting large amounts of data within a variety of different organizations. The role of a data professional is defined differently across companies. Generally speaking, data professionals possess technical and strategic capabilities that require more advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning. They perform a variety of tasks related to gathering, structuring, interpreting, monitoring, and reporting data in accessible formats, enabling stakeholders to understand and use data effectively. Ultimately, the work of data professionals helps organizations make informed, ethical decisions.
Large volumes of data — and the technology needed to manage and analyze it — are becoming increasingly accessible. Because of this, there has been a surge in career opportunities for people who can tell stories using data, such as senior data analysts and data scientists. These professionals collect, analyze, and interpret large amounts of data within a variety of different organizations. Their responsibilities require advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning.