This comprehensive course is a hands-on guide to developing and maintaining high-quality datasets for visual AI applications. Learners will gain in-depth knowledge and practical skills in: discovering and implementing various labeling approaches, from manual to fully automated methods; assessing and improving annotation quality for object detection tasks, including identifying and correcting common labeling issues; analyzing the impact of bounding box quality on model performance and developing strategies to enhance label consistency; use advanced tools like FiftyOne and CVAT for dataset exploration, error correction, and annotation refinement; addressing complex challenges in computer vision, such as overlapping detections, occlusions, and small object detection; implementing data augmentation techniques to improve model robustness and generalization; and applying concepts like sample hardness and entropy in the context of model training and dataset curation. Through a combination of theoretical knowledge and hands-on exercises, students will learn to create, maintain, and optimize datasets that lead to more accurate and reliable visual AI models.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Empfohlene Erfahrung
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
September 2024
12 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
At the end of this module, you will be able to describe the data-centric AI paradigm and its importance in modern deep learning workflows. You will be able to explain the data and model feedback loop in the context of object detection and instance segmentation tasks. You'll be able to apply FiftyOne to evaluate initial model performance for object detection and instance segmentation tasks. You'll be able to interpret common evaluation metrics for object detection and instance segmentation models.
Das ist alles enthalten
9 Videos18 Lektüren3 Aufgaben1 Diskussionsthema
After this module, you will be able to analyze dataset statistic to gain a holistic understanding of the data. You will be able to identify and assess various image quality issues that can impact model performance. You will be able to use FiftyOne to detect and visualize image quality problems, outliers, and diversity issues. And finally, you'll be able to develop strategies to address identified image quality and diversity issues.
Das ist alles enthalten
12 Videos21 Lektüren5 Aufgaben5 Diskussionsthemen
After this module, you will be able to assess the quality of annotations for object detection tasks. You'll be able to identify common labeling issues such as mislabeled data, hard samples, and occlusions. You will be able to analyze the impact of bounding box on model performance and develop strategies to improve label quality and consistency.
Das ist alles enthalten
7 Videos12 Lektüren4 Aufgaben3 Diskussionsthemen
After this module, you will be able to apply advanced data-centric AI techniques such as data augmentation and active learning. You will be able to implement an end-to-end workflow for iterative model improvement using FiftyOne. You will be able to develop a strategy for maintaining dataset quality over time and finally be able to synthesize and apply techniques to improve model performance on a given dataset.
Das ist alles enthalten
5 Videos6 Lektüren2 Diskussionsthemen
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Kennesaw State University
Microsoft
University of Colorado Boulder
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.