Este curso se enfoca en aprovechar la flexibilidad y facilidad de uso de TensorFlow 2.x y Keras para compilar, entrenar e implementar modelos de aprendizaje automático. Aprenderá sobre la jerarquía de la API de TensorFlow 2.x y conocerá los componentes principales de TensorFlow mediante ejercicios prácticos. Le mostraremos cómo trabajar con conjuntos de datos y columnas de atributos. Aprenderá a diseñar y compilar una canalización de datos de entrada de TensorFlow 2.x. Adquirirá experiencia práctica en la carga de arreglos de NumPy, imágenes y datos de texto con tf.data.Dataset, así como de datos de CSV con Pandas. También adquirirá experiencia práctica en la creación de columnas de atributos numéricas, categóricas, agrupadas en depósitos y con hash.
Intro to TensorFlow en Español
Dieser Kurs ist Teil von Spezialisierung Machine Learning with TensorFlow on Google Cloud en Español
Dozent: Google Cloud Training
4.848 bereits angemeldet
Bei enthalten
(137 Bewertungen)
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
12 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 6 Module
Este curso es una introducción a TensorFlow 2.x, que incorpora la facilidad de uso de Keras para compilar modelos de aprendizaje automático. En este curso, se abarcarán el diseño y la compilación de una canalización de datos de entrada de TensorFlow 2.x., la compilación de modelos de aprendizaje automático con TensorFlow 2.x y Keras, la mejora en la exactitud de estos modelos y su correspondiente escritura para una utilización escalada.
Das ist alles enthalten
2 Videos
Le mostraremos el nuevo paradigma de TensorFlow 2.x. Aprenderá sobre la jerarquía de la API de TensorFlow y conocerá los componentes principales de TensorFlow, los tensores y las variables, mediante ejercicios prácticos.
Das ist alles enthalten
5 Videos1 Lektüre3 Aufgaben2 App-Elemente1 Diskussionsthema
Le mostraremos cómo trabajar con conjuntos de datos y columnas de atributos. Adquirirá experiencia práctica en la carga de arreglos de NumPy, imágenes y datos de texto con tf.data.Dataset, así como de datos de CSV con Pandas. También adquirirá experiencia práctica en la creación de columnas de atributos numéricas, categóricas, agrupadas en depósitos y con hash.
Das ist alles enthalten
10 Videos1 Lektüre3 Aufgaben6 App-Elemente1 Diskussionsthema
En este módulo, le mostraremos cómo escribir modelos de TensorFlow con la API secuencial de Keras, pero, antes de sumergirnos en la escritura del modelo, hablaremos sobre las funciones de activación, pérdida y optimización. Luego, se le presentará la API secuencial de Keras para mostrarle cómo crear modelos de aprendizaje profundo. Además, aprenderá a implementar el modelo para la predicción en la nube.
Das ist alles enthalten
5 Videos1 Lektüre2 Aufgaben3 App-Elemente
En la mayoría de las situaciones, la API del modelo Sequential es ideal para desarrollar modelos de aprendizaje profundo, pero tiene algunas limitaciones. Por ejemplo, no define de forma directa los modelos que pueden tener varias fuentes de entrada o producir varios destinos de salida, como tampoco los modelos que reutilizan capas. La API funcional de Keras es una forma de crear modelos más flexibles que los de la API de tf.keras.Sequential. La API funcional procesa modelos con topología no lineal, capas compartidas, y varias salidas y entradas. La API funcional de Keras proporciona una forma más flexible de definir los modelos. Específicamente, le permite definir varios modelos de entrada y salida, así como los que comparten capas. Además, le permite definir grafos acíclicos de red ad hoc. La principal idea es que un modelo de aprendizaje profundo suele ser un grafo acíclico dirigido (DAG) de capas. Por lo tanto, la API funcional es una forma de compilar grafos de capas. En este módulo, también hablaremos sobre cómo la regularización puede ayudar con el rendimiento del modelo.
Das ist alles enthalten
6 Videos1 Lektüre3 Aufgaben1 App-Element
Haremos un resumen de los temas sobre TensorFlow que tratamos hasta aquí en este curso. Repasaremos el código principal de TensorFlow, la API de tf.data, las API secuencial y funcional de Keras, y finalizaremos con el escalamiento de sus modelos de aprendizaje automático mediante AI Platform de Cloud.
Das ist alles enthalten
1 Video2 Lektüren1 Aufgabe
Dozent
von
Empfohlen, wenn Sie sich für Machine Learning interessieren
Coursera Project Network
Coursera Project Network
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
137 Bewertungen
- 5 stars
59,85 %
- 4 stars
30,65 %
- 3 stars
7,29 %
- 2 stars
0,72 %
- 1 star
1,45 %
Zeigt 3 von 137 an
Geprüft am 16. Sep. 2020
Excellent course, was sohard for me but I'm happy that finished and learn so mucho.
Geprüft am 25. Jan. 2020
Los ejercicios prácticos refuerzan mucho lo aprendido en los videos, el contenido es bastante bueno y las explicaciones son bastante simples de entender.
Geprüft am 25. Nov. 2020
Es un interesante tema, en este curso entendi mejor el flujo de trabajo con tensorflow y CMLE.
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.