This course gives you a comprehensive introduction to both the theory and practice of machine learning. You will learn to use Python along with industry-standard libraries and tools, including Pandas, Scikit-learn, and Tensorflow, to ingest, explore, and prepare data for modeling and then train and evaluate models using a wide variety of techniques. Those techniques include linear regression with ordinary least squares, logistic regression, support vector machines, decision trees and ensembles, clustering, principal component analysis, hidden Markov models, and deep learning.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Machine Learning: Concepts and Applications
Dozent: Dr. Nick Feamster
3.277 bereits angemeldet
Bei enthalten
(17 Bewertungen)
Empfohlene Erfahrung
Kompetenzen, die Sie erwerben
- Kategorie: Unsupervised Learning
- Kategorie: Artificial Neural Network
- Kategorie: Machine Learning
- Kategorie: regression
- Kategorie: Statistical Classification
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
20 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 9 Module
In this module you will be introduced to the machine-learning pipeline and learn about the initial work on your data that you need to do prior to modeling. You will learn about how to ingest data using Pandas, a standard Python library for data exploration and preparation. Next, we turn to the first approach to modeling that we explore in this class, linear regression with ordinary least squares.
Das ist alles enthalten
6 Videos2 Aufgaben3 Unbewertete Labore
In this module, you continue the work that we began in the last with linear regressions. You will learn more about how to evaluate such models and how to select the important features and exclude the ones that are not statistically significant. You will also learn about maximum likelihood estimation, a probabilistic approach to estimating your models.
Das ist alles enthalten
4 Videos2 Aufgaben1 Programmieraufgabe2 Unbewertete Labore
This module introduces you to basis functions and polynomial expansions in particular, which will allow you to use the same linear regression techniques that we have been studying so far to model non-linear relationships. Then, we learn about the bias-variance tradeoff, a key relationship in machine learning. Methods like polynomial expansion may help you train models that capture the relationship in your training data quite well, but those same models may perform badly on new data. You learn about different regularization methods that can help balance this tradeoff and create models that avoid overfitting.
Das ist alles enthalten
4 Videos2 Aufgaben2 Unbewertete Labore
In this module, you first learn more about evaluating and tuning your models. We look at cross validation techniques that will help you get more accurate measurements of your model's performance, and then you see how to use them along with pipelines and GridSearch to tune your models. Finally, we look a the theory and practice of our first technique for classification, logistic regression.
Das ist alles enthalten
4 Videos2 Aufgaben2 Unbewertete Labore
You will learn about two more classification techniques in this module: first, Support Vector Machines (SVMs) and then Naive Bayes, a quick and highly interpretable approach that uses Bayes' theorem.
Das ist alles enthalten
4 Videos3 Aufgaben3 Unbewertete Labore
In this module, you will first learn about classification using decision trees. We will see how to create models that use individual decision trees, and then ensemble models, which use many trees, such as bagging, boosting, and random forests. Then, we learn more about how to evaluate the performance of classifiers.
Das ist alles enthalten
5 Videos3 Aufgaben3 Unbewertete Labore
To this point, we have been focusing on supervised learning and training models that estimate a target variable that you have specified. In this module, we take our first look at unsupervised learning, a domain of machine learning that uses techniques to find patterns and relationships in data without you ever defining a target. In particular, we look at a variety of clustering techniques, beginning with k-means and hierarchical clustering, and then distribution and density-based clustering.
Das ist alles enthalten
4 Videos2 Aufgaben2 Unbewertete Labore
You will look at two new techniques in this module. The first is Principal Component Analysis, a powerful dimensionality reduction technique that you can use to project high-dimensional features into lower-dimensional spaces. This can be used for a range of purposes, including feature selection, preventing overfitting, visualizing in two- or three-dimensional spaces higher dimensional data, and more. Then, you will study hidden Markov models, a technique that you can use to model sequences of states, where each state depends on the one that came before.
Das ist alles enthalten
4 Videos2 Aufgaben2 Unbewertete Labore
This module introduces you to one of the most hyped topics in machine learning, deep learning with feed-forward neural networks and convolutional neural networks. You will learn about how these techniques work and where they might be very effective--or very ineffective. We explore how to design, implement, and evaluate such models using Python and Keras.
Das ist alles enthalten
4 Videos2 Aufgaben2 Unbewertete Labore
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Duke University
Alberta Machine Intelligence Institute
Politecnico di Milano
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.