The course "Mastering Neural Networks and Model Regularization" dives deep into the fundamentals and advanced techniques of neural networks, from understanding perceptron-based models to implementing cutting-edge convolutional neural networks (CNNs). This course offers hands-on experience with real-world datasets, such as MNIST, and focuses on practical applications using the PyTorch framework. Learners will explore key regularization techniques like L1, L2, and drop-out to reduce model overfitting, as well as decision tree pruning.
Mastering Neural Networks and Model Regularization
Dieser Kurs ist Teil von Spezialisierung Applied Machine Learning
Dozent: Erhan Guven
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Build neural networks from scratch and apply them to real-world datasets like MNIST.
Apply back-propagation for optimizing neural network models and understand computational graphs.
Utilize L1, L2, drop-out regularization, and decision tree pruning to reduce model overfitting.
Implement convolutional neural networks (CNNs) and tensors using PyTorch for image and audio processing.
Kompetenzen, die Sie erwerben
- Kategorie: PyTorch Proficiency
- Kategorie: Regularization Techniques
- Kategorie: Neural Network Implementation
- Kategorie: Convolutional Neural Networks (CNNs)
- Kategorie: Back-Propagation Mastery
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
September 2024
12 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 5 Module
This course provides a comprehensive introduction to neural networks, focusing on the perceptron model, regularization techniques, and practical implementation using PyTorch. Students will build and evaluate neural networks, including convolutional architectures for image processing and audio signal modeling. Emphasis will be placed on comparing performance metrics and understanding advanced concepts like computational graphs and loss functions. By the end of the course, participants will be equipped with the skills to effectively design, implement, and optimize neural network models.
Das ist alles enthalten
2 Lektüren
In this module, you will learn about the fundamental concepts in neural networks, covering the perceptron model, model parameters, and the back-propagation algorithm. You'll also learn to implement a neural network from scratch and apply it to classify MNIST images, evaluating performance against sklearn's library function.
Das ist alles enthalten
4 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor
In this module, you'll delve into techniques to enhance machine learning model performance and generalization. You'll grasp the necessity of regularization to mitigate overfitting, compare L1 and L2 regularization methods, understand decision tree pruning, explore dropout regularization in neural networks, and observe how regularization shapes model decision boundaries.
Das ist alles enthalten
3 Videos3 Lektüren3 Aufgaben1 Unbewertetes Labor
In this module, you'll cover essential concepts and practical skills in deep learning using PyTorch. You'll also learn computational graphs in supervised learning, create and manipulate tensors in PyTorch, compare activation and loss functions, learn implementation steps and library functions for neural network training, and optimize models by running them on GPU for enhanced performance.
Das ist alles enthalten
3 Videos2 Lektüren3 Aufgaben1 Unbewertetes Labor
In this module, you'll focus on advanced applications of convolutional neural networks (CNNs) using PyTorch. You'll also learn to implement CNN filters, compare different CNN architectures, develop models for image processing tasks in PyTorch, and explore techniques for modeling audio time signals using Spectrogram features for enhanced analysis and classification.
Das ist alles enthalten
2 Videos3 Lektüren3 Aufgaben1 Programmieraufgabe
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.