Johns Hopkins University
Spezialisierung Applied Machine Learning

Diese spezialisierung ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Johns Hopkins University

Spezialisierung Applied Machine Learning

Master Applied Machine Learning Techniques. Master advanced machine learning techniques to solve real-world problems in data processing, computer vision, and neural networks

Erhan Guven

Dozent: Erhan Guven

Bei Coursera Plus enthalten

Befassen Sie sich eingehend mit einem Thema
Stufe Mittel

Empfohlene Erfahrung

3 Monate
Pro Woche 5 Stunden
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Befassen Sie sich eingehend mit einem Thema
Stufe Mittel

Empfohlene Erfahrung

3 Monate
Pro Woche 5 Stunden
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Master data preprocessing techniques for machine learning applications.

  • Evaluate and optimize machine learning models for performance and accuracy.

  • Implement supervised and unsupervised learning algorithms effectively.

  • Apply advanced neural network architectures like Convolutional Neural Networks (CNNs) in computer vision tasks.

Kompetenzen, die Sie erwerben

  • Kategorie: PyTorch Framework
  • Kategorie: Ensemble Learning
  • Kategorie: Data Pre-Processing
  • Kategorie: Reinforcement Learning
  • Kategorie: Regularization Techniques
  • Kategorie: Supervised Learning
  • Kategorie: Convolutional Neural Networks (CNNs)
  • Kategorie: Model Evaluation
  • Kategorie: Neural Networks

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Unterrichtet in Englisch
Kürzlich aktualisiert!

September 2024

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse.

  • Erlernen Sie gefragte Kompetenzen von Universitäten und Branchenexperten.
  • Erlernen Sie ein Thema oder ein Tool mit echten Projekten.
  • Entwickeln Sie ein fundiertes Verständnisse der Kernkonzepte.
  • Erwerben Sie ein Karrierezertifikat von Johns Hopkins University.
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

Spezialisierung - 3 Kursreihen

Was Sie lernen werden

  • Understand and implement machine learning techniques for computer vision tasks, including image recognition and object detection.

  • Analyze data features and evaluate machine learning model performance using appropriate metrics and evaluation techniques.

  • Apply data pre-processing methods to clean, transform, and prepare data for effective machine learning model training.

  • Implement and optimize supervised learning algorithms for classification and regression tasks.

Kompetenzen, die Sie erwerben

Kategorie: Data Pre-Processing
Kategorie: Feature Engineering
Kategorie: Supervised Learning
Kategorie: Practical Application
Kategorie: Model Evaluation

Was Sie lernen werden

  • Understand and apply ensemble methods to improve model accuracy and robustness by combining multiple learning algorithms.

  • Explore advanced regression techniques for predicting continuous outcomes and modeling complex relationships in data.

  • Apply unsupervised learning algorithms for clustering, dimensionality reduction, and pattern recognition in unlabeled data.

  • Understand and implement reinforcement learning techniques and apriori analysis for decision-making and association rule mining.

Kompetenzen, die Sie erwerben

Kategorie: Ensemble Learning
Kategorie: Unsupervised Learning
Kategorie: Reinforcement Learning
Kategorie: Apriori Analysis
Kategorie: Advanced Regression Techniques

Was Sie lernen werden

  • Build neural networks from scratch and apply them to real-world datasets like MNIST.

  • Apply back-propagation for optimizing neural network models and understand computational graphs.

  • Utilize L1, L2, drop-out regularization, and decision tree pruning to reduce model overfitting.

  • Implement convolutional neural networks (CNNs) and tensors using PyTorch for image and audio processing.

Kompetenzen, die Sie erwerben

Kategorie: PyTorch Proficiency
Kategorie: Regularization Techniques
Kategorie: Neural Network Implementation
Kategorie: Convolutional Neural Networks (CNNs)
Kategorie: Back-Propagation Mastery

Dozent

Erhan Guven
Johns Hopkins University
3 Kurse385 Lernende

von

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen