Este curso te va a brindar conocimientos, tanto teóricos como prácticos, para que puedas construir modelos predictivos utilizando técnicas de aprendizaje automático (en inglés, machine learning). Estos modelos nos permiten anticipar en alguna medida eventos futuros y, en consecuencia, pueden ser utilizados para apoyar la toma de decisiones en las organizaciones y, en general, en cualquier dominio de aplicación.
Modelos predictivos con aprendizaje automático
Dieser Kurs ist Teil von Spezialisierung Ciencia de datos
Dozent: Haydemar Nuñez Castro
2.864 bereits angemeldet
Bei enthalten
(60 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Comprender qué es el aprendizaje automático y los tipos de problemas que pueden resolverse con estas técnicas.
Construir modelos predictivos con base en los objetivos de negocio y los datos disponibles, con herramientas de aprendizaje automático en Python.
Entender el proceso para desarrollar un proyecto basado en datos, desde la formulación del problema hasta la evaluación e interpretación del modelo.
Kompetenzen, die Sie erwerben
- Kategorie: manejo de librerías basadas en python para el aprendizaje automático en el ambiente Jupyter Notebook
- Kategorie: Desarrollo de modelos de regresión y clasificación para el análisis de información
- Kategorie: empleo de una metodología para el desarrollo de proyectos basados en datos
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
8 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
Bienvenido al primer módulo del curso. Aquí te voy a mostrar, a través del estudio de algunos casos de uso, qué es el aprendizaje automático y cuáles son las características de los proyectos que pueden ser realizados con estás técnicas. Además, conocerás algunas áreas de aplicación del aprendizaje automático y sabrás diferenciar los diversos contextos de aprendizaje, supervisado y no supervisado, así como sus tareas asociadas. También tendrás la oportunidad de conocer el proceso de aprendizaje a través de una metodología y cuáles son algunas herramientas, en el lenguaje de programación Python, que puedes utilizar para la implementación de este tipo de proyectos.
Das ist alles enthalten
7 Videos7 Lektüren2 Aufgaben2 Diskussionsthemen6 Plug-ins
Bienvenido al segundo módulo del curso, el cual lo dedicaremos al estudio de la tarea de regresión. Aprenderás cómo resolver un problema de predicción numérica utilizando el algoritmo de regresión lineal, tanto simple como de múltiples variables. También conocerás algunas métricas que te permitirán medir el rendimiento del modelo generado, así como técnicas para determinar la calidad de las predicciones para datos nuevos. Por último, aplicarás estos conceptos a un caso utilizando la librería de aprendizaje automático scikit-learn.
Das ist alles enthalten
4 Videos6 Lektüren2 Aufgaben1 Diskussionsthema3 Plug-ins
Bienvenido al tercer módulo del curso, en el cual vamos a estudiar algunas técnicas que te permitirán mejorar el rendimiento de los modelos predictivos. En primer lugar, veremos una trasformación que habilita el uso de la regresión lineal en problemas no lineales. Luego, presentaremos un concepto muy importante en al aprendizaje a partir de datos, la complejidad de modelos, y discutiremos cómo este puede afectar el rendimiento de generalización. También aprenderás qué es la regularización y cómo funciona como método de control de complejidad. Conocerás las versiones regularizadas de la regresión lineal y cómo ajustar hiperparámetros con técnicas de validación. Por último, tendrás la oportunidad de aplicar estos conceptos a un caso utilizando la librería scikit-learn.
Das ist alles enthalten
5 Videos6 Lektüren2 Aufgaben4 Plug-ins
Bienvenido al último módulo del curso, en el cual estudiaremos la tarea de clasificación. Aprenderás cómo un algoritmo de aprendizaje resuelve un problema de este tipo y veremos en acción uno muy popular, los árboles de decisión. También conocerás algunas métricas para evaluar este tipo de modelos y cuál es la base a partir de la cual se derivan. Además, aplicarás los conceptos vistos sobre complejidad y ajuste de hiperparámetros para construir modelos basados en árboles de decisión con buenas capacidades de generalización. Por último, resolverás un caso utilizando la librería de aprendizaje automático scikit-learn. Para cerrar, tendrás la oportunidad de comprender las implicaciones éticas en el desarrollo de soluciones a partir de datos.
Das ist alles enthalten
6 Videos7 Lektüren2 Aufgaben2 Plug-ins
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Universidad de los Andes
Universidad de los Andes
Universidad de los Andes
Universidad de los Andes
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 60
60 Bewertungen
- 5 stars
80 %
- 4 stars
15 %
- 3 stars
3,33 %
- 2 stars
1,66 %
- 1 star
0 %
Geprüft am 17. Juni 2024
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Al inscribirte al curso puedes elegir la opción que más te interese, bien sea auditarlo, en cuyo caso tendrás acceso al contenido del curso de forma gratuita; o con certificación, en cuyo caso deberás realizar algunas evaluaciones adicionales obligatorias y cumplir con los demás requisitos de la plataforma (hacer la verificación de identidad al presentar las evaluaciones obligatorias, lograr el porcentaje mínimo para pasar el curso y pagar directamente a Coursera el precio de la certificación anunciado en la plataforma).
El certificado de participación lo emite Coursera directamente. Puedes adquirirlo siempre y cuando cumplas con los tres requisitos siguientes: presentar las evaluaciones adicionales obligatorias, hacer la verificación de identidad al presentarlas, lograr el porcentaje mínimo para pasar el curso y pagar el precio anunciado por la plataforma.
Una vez cumplidos los requisitos para la obtención del certificado, debes realizar el pago directamente a Coursera. Ten en cuenta que actualmente las plataformas sólo permiten pagos con tarjetas de crédito internacionales; pero esperamos que pronto activen nuevas alternativas. En caso de que no cuentes con este medio de pago (tarjeta de crédito internacional), puedes solicitar ayuda financiera directamente a la plataforma a través de la opción "Learn more and apply" (Aprender más y aplicar) en la sección "Financial Aid" (Ayuda Financiera) que encuentras debajo del botón de inscripción "Enroll" (Inscribirse). Allí tendrás que completar una aplicación muy sencilla; ningún otro documento o trámite es necesario.