Machine learning is the study that allows computers to adaptively improve their performance with experience accumulated from the data observed. Our two sister courses teach the most fundamental algorithmic, theoretical and practical tools that any user of machine learning needs to know. This second course of the two would focus more on algorithmic tools, and the other course would focus more on mathematical tools. [機器學習旨在讓電腦能由資料中累積的經驗來自我進步。我們的兩項姊妹課程將介紹各領域中的機器學習使用者都應該知道的基礎演算法、理論及實務工具。本課程將較為著重方法類的工具,而另一課程將較為著重數學類的工具。]
Neues Jahr. Große Ziele. Höhere Einsparungen. Schalte mit Coursera Plus für $199 ein Jahr unbegrenzten Zugang zum Lernen frei. Jetzt sparen.
機器學習基石下 (Machine Learning Foundations)---Algorithmic Foundations
Dozent: 林軒田
17.000 bereits angemeldet
Bei enthalten
(328 Bewertungen)
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
2 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 8 Module
weight vector for linear hypotheses and squared error instantly calculated by analytic solution
Das ist alles enthalten
4 Videos4 Lektüren
gradient descent on cross-entropy error to get good logistic hypothesis
Das ist alles enthalten
4 Videos
binary classification via (logistic) regression; multiclass classification via OVA/OVO decomposition
Das ist alles enthalten
4 Videos
nonlinear model via nonlinear feature transform+linear model with price of model complexity
Das ist alles enthalten
4 Videos1 Aufgabe
overfitting happens with excessive power, stochastic/deterministic noise and limited data
Das ist alles enthalten
4 Videos
minimize augmented error, where the added regularizer effectively limits model complexity
Das ist alles enthalten
4 Videos
(crossly) reserve validation data to simulate testing procedure for model selection
Das ist alles enthalten
4 Videos
be aware of model complexity, data goodness and your professionalism
Das ist alles enthalten
4 Videos1 Aufgabe
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Google Cloud
University of Pennsylvania
DeepLearning.AI
Johns Hopkins University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
328 Bewertungen
- 5 stars
93,90 %
- 4 stars
4,87 %
- 3 stars
0,60 %
- 2 stars
0,30 %
- 1 star
0,30 %
Zeigt 3 von 328 an
Geprüft am 14. Apr. 2018
A perfect course in spite of a little in-digestibility .
Geprüft am 2. Mai 2020
Great course on soliciting basics of ML! Looking forward to next one.
Geprüft am 26. Okt. 2021
The course is moderately difficult and challenging
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.