In this comprehensive course, you'll dive into the world of real-time object detection with YOLO, one of the most powerful algorithms for detecting objects in images and videos. The course begins with an introduction to YOLO and object detection, followed by setting up your development environment with Anaconda and installing essential libraries like OpenCV. A review of Python basics ensures you are equipped with the necessary programming knowledge before delving into convolutional neural networks (CNNs).
Computer Vision: YOLO Custom Object Detection with Colab GPU
Dozent: Packt - Course Instructors
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Identify the steps required to set up the YOLO environment and Colab GPU.
Explain the process of Non-Maximum Suppression in object detection.
Utilize pre-trained YOLO models to perform object detection on images and videos.
Compare the results of object detection across different datasets using YOLO.
Kompetenzen, die Sie erwerben
- Kategorie: Python
- Kategorie: OpenCV
- Kategorie: CNN
- Kategorie: YOLO
- Kategorie: Google Colab
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
Oktober 2024
10 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 26 Module
In this module, we will introduce the course content and outline the key concepts you'll be learning. This section will provide an overview, helping you understand the course structure and what to expect as you progress.
Das ist alles enthalten
1 Video1 Lektüre
In this module, we will dive into the basics of YOLO, a state-of-the-art object detection algorithm. You'll learn about its scope, importance, and why it's widely used in various computer vision applications.
Das ist alles enthalten
1 Video
In this module, we will guide you through installing and setting up Anaconda, a popular platform for managing Python environments. You'll learn how to prepare your system for running the course projects.
Das ist alles enthalten
1 Video1 Aufgabe
In this module, we will cover fundamental Python programming concepts, including flow control, data structures, and functions. These basics are crucial for developing and understanding the custom YOLO model later in the course.
Das ist alles enthalten
4 Videos
In this module, we will walk you through the installation of the OpenCV library, a key tool for image processing and computer vision. You'll ensure your environment is ready for the practical tasks ahead.
Das ist alles enthalten
1 Video
In this module, we will introduce Convolutional Neural Networks (CNNs), the backbone of many modern computer vision applications. You'll gain insights into how CNNs function and their relevance to YOLO.
Das ist alles enthalten
1 Video1 Aufgabe
In this module, we will guide you through using a pre-trained YOLO model to detect objects in images. You'll learn how to perform this task step-by-step, gaining hands-on experience with the YOLO algorithm.
Das ist alles enthalten
4 Videos
In this module, we will explore Non-Maximum Suppression (NMS), a technique used to improve object detection accuracy in YOLO. You'll see how NMS helps eliminate redundant detections, refining the final output.
Das ist alles enthalten
2 Videos
In this module, we will demonstrate how to perform real-time object detection using a webcam and a pre-trained YOLO model. You'll learn to adapt YOLO for live video feeds, enhancing your practical skills.
Das ist alles enthalten
1 Video1 Aufgabe
In this module, we will show you how to apply YOLO to detect objects in pre-saved video files. You'll explore the nuances of video-based detection and how to optimize the model for such tasks.
Das ist alles enthalten
1 Video
In this module, we will introduce you to the process of custom training a YOLO model. You'll learn about the advantages of customizing YOLO for specific tasks and get an overview of the training process.
Das ist alles enthalten
1 Video
In this module, we will focus on setting up the Darknet environment, a key step in custom training YOLOv4 models. You'll download the necessary weights and prepare your system for the training process.
Das ist alles enthalten
2 Videos1 Aufgabe
In this module, we will guide you through the data collection process for training a YOLOv4 model. You'll learn how to gather and organize data effectively, ensuring your training dataset is robust.
Das ist alles enthalten
2 Videos
In this module, we will cover the image labeling process, a critical step in preparing your dataset for YOLOv4 training. You'll use labeling tools to create accurate and consistent annotations for your images.
Das ist alles enthalten
2 Videos
In this module, we will explain the concept of train-test splitting, essential for evaluating the performance of your YOLOv4 model. You'll learn how to balance your data to achieve optimal training results.
Das ist alles enthalten
1 Video1 Aufgabe
In this module, we will focus on the final stages of preparing your dataset for YOLOv4 training. You'll apply preprocessing techniques to ensure your data is ready for the training phase.
Das ist alles enthalten
2 Videos
In this module, we will demonstrate how to sync your data with Google Drive and connect it to Colab. You'll learn how to manage your files efficiently, ensuring smooth operation during model training.
Das ist alles enthalten
2 Videos
In this module, we will guide you through compiling and testing Darknet, the framework used for YOLOv4 training. You'll learn to resolve any issues that may arise during the setup process.
Das ist alles enthalten
3 Videos1 Aufgabe
In this module, we will explore how to monitor and analyze the training progress of your YOLOv4 model. You'll use charts and metrics to assess performance and make necessary adjustments.
Das ist alles enthalten
1 Video
In this module, we will cover the final steps of YOLOv4 training, including downloading and saving the model weights. You'll learn how to complete the training process and prepare your model for deployment.
Das ist alles enthalten
1 Video
In this module, we will discuss the GPU usage limits in Google Colab and how they may affect your YOLOv4 training. You'll learn strategies to manage these limits and keep your training process uninterrupted.
Das ist alles enthalten
1 Video1 Aufgabe
In this module, we will guide you through upgrading OpenCV to ensure compatibility with YOLOv4. You'll learn how to perform the upgrade and resolve any issues that may arise.
Das ist alles enthalten
1 Video
In this module, we will demonstrate how to use a pre-trained YOLOv4 model to detect objects in both images and videos. You'll explore the model's versatility and practical uses in various scenarios.
Das ist alles enthalten
1 Video1 Aufgabe
In this module, we will show you how to train a YOLOv4 model to detect coronavirus in images. You'll learn the nuances of customizing YOLOv4 for specialized detection tasks.
Das ist alles enthalten
1 Video
In this module, we will focus on applying a custom-trained YOLOv4 model to detect coronavirus in videos. You'll gain experience in adapting image-based models for video analysis.
Das ist alles enthalten
1 Video1 Aufgabe
In this module, we will present additional real-world case studies demonstrating the application of YOLO in different industries. You'll see how the concepts learned can be applied to solve real-world challenges.
Das ist alles enthalten
1 Video1 Aufgabe
Dozent
von
Empfohlen, wenn Sie sich für Machine Learning interessieren
Johns Hopkins University
University at Buffalo
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.