Packt
Regression Analysis for Statistics & Machine Learning in R

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Packt

Regression Analysis for Statistics & Machine Learning in R

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 10 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 10 Stunden
3 Wochen bei 3 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Understand the principles of Ordinary Least Square (OLS) regression and its application in R.

  • Analyze and evaluate statistical and ML-based regression models to address issues like multicollinearity.

  • Apply techniques for variable selection and evaluate model accuracy using cross-validation methods.

  • Create and interpret Generalized Linear Models (GLMs), utilizing logistic regression as a binary classifier.

Kompetenzen, die Sie erwerben

  • Kategorie: Statistics
  • Kategorie: R
  • Kategorie: Regression Analysis
  • Kategorie: Generalized Linear Models
  • Kategorie: Regression analysis
  • Kategorie: Machine Learning

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

August 2024

Bewertungen

8 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 7 Module

In this module, we will introduce you to the essential concepts and tools for regression analysis in R. You'll learn the differences between statistical analysis and machine learning, get familiar with R and R Studio, and start working with data. We'll guide you through the steps of data cleaning and perform some initial exploratory data analysis to set a solid foundation for your future learning.

Das ist alles enthalten

8 Videos1 Lektüre1 Aufgabe

In this module, we will delve into Ordinary Least Squares (OLS) regression, covering both theory and practical implementation in R. You will learn how to interpret OLS results, calculate and apply confidence intervals, and explore various OLS regression techniques, including models without intercepts, ANOVA, and multiple linear regression with interaction and dummy variables. Additionally, we will discuss the essential conditions that OLS models must satisfy to ensure accurate and reliable results.

Das ist alles enthalten

12 Videos1 Aufgabe

In this module, we will address the challenge of multicollinearity in OLS regression models. You will learn how to detect multicollinearity and manage regression analyses with correlated predictors. The module covers advanced regression techniques such as Principal Component Regression, Partial Least Square Regression, Ridge Regression, and LASSO Regression, providing you with a comprehensive toolkit to handle multicollinearity effectively in R.

Das ist alles enthalten

7 Videos1 Aufgabe

In this module, we will explore the critical aspects of variable and model selection in regression analysis. You will understand why selection is essential, learn how to choose the most appropriate OLS regression model, and identify model subsets. We'll cover evaluating regression model accuracy from a machine learning perspective and assessing performance using diverse metrics. Additionally, you will implement LASSO Regression for variable selection and analyze the contribution of predictors in explaining the variation in the outcome variable.

Das ist alles enthalten

8 Videos1 Aufgabe

In this module, we will tackle common violations of OLS regression model assumptions. You will learn how to apply data transformations to correct issues, use robust regression methods to manage outliers, and address heteroscedasticity to ensure the reliability and validity of your regression models. This module equips you with essential techniques to refine your analysis and improve model performance.

Das ist alles enthalten

4 Videos1 Aufgabe

In this module, we will introduce you to Generalized Linear Models (GLMs) and their various applications. You will learn the fundamentals of GLMs, including logistic regression for binary response variables, multinomial logistic regression, and regression techniques for count data. Additionally, we will cover methods to evaluate the goodness of fit for these models. This module will enhance your understanding of how GLMs extend traditional linear regression models to handle a wider range of data types and distributions.

Das ist alles enthalten

7 Videos1 Aufgabe

In this module, we will explore advanced methods for working with non-parametric and non-linear data. You will learn to implement polynomial and non-linear regression techniques, use Generalized Additive Models (GAMs) and their boosted versions, and develop Multivariate Adaptive Regression Splines (MARS) models. We will also cover CART regression trees, Conditional Inference Trees, Random Forests, and Gradient Boosting Regression. Additionally, you will gain insights into selecting suitable machine learning models for complex data scenarios, enhancing your ability to handle diverse data structures in R.

Das ist alles enthalten

10 Videos2 Aufgaben

Dozent

Packt - Course Instructors
Packt
375 Kurse25.243 Lernende

von

Packt

Empfohlen, wenn Sie sich für Machine Learning interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen