Packt
The Ultimate Hands-On Hadoop

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Packt

The Ultimate Hands-On Hadoop

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 16 Stunden
3 Wochen bei 5 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 16 Stunden
3 Wochen bei 5 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Remember Hadoop setup and configuration steps.

  • Understand the Hadoop ecosystem, including HDFS, MapReduce, and YARN.

  • Apply queries using Pig, Hive, and Spark.

  • Evaluate Hadoop cluster performance and optimize it.

Kompetenzen, die Sie erwerben

  • Kategorie: MongoDB
  • Kategorie: spark
  • Kategorie: Hadoop
  • Kategorie: Kafka
  • Kategorie: Apache Hadoop
  • Kategorie: Big Data
  • Kategorie: Spark

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Oktober 2024

Bewertungen

5 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 12 Module

In this module, we will dive into the world of Hadoop, starting with its installation and setup using the Hortonworks Data Platform Sandbox. You'll explore the key buzzwords and technologies that make up the Hadoop ecosystem, learn about the historical context and impact of the Hortonworks and Cloudera merger, and begin working with real data to get a feel for Hadoop's capabilities.

Das ist alles enthalten

4 Videos1 Lektüre

In this module, we will explore the core components of Hadoop: the Hadoop Distributed File System (HDFS) and MapReduce. You'll learn how HDFS reliably stores massive data sets across a cluster and how MapReduce enables distributed data processing. Through hands-on activities, you'll import datasets, set up a MapReduce environment, and write scripts to analyze data, including breaking down movie ratings and ranking movies by popularity.

Das ist alles enthalten

10 Videos

In this module, we will delve into Pig, a high-level scripting language that simplifies Hadoop programming. You'll start by exploring the Ambari web-based UI, which makes working with Pig more accessible. The module includes practical examples and activities, such as finding the oldest five-star movies and identifying the most-rated one-star movies using Pig scripts. You'll also learn about the capabilities of Pig Latin and test your skills through challenges and result comparisons.

Das ist alles enthalten

7 Videos1 Aufgabe

In this module, we will explore the power of Apache Spark, a key technology in the Hadoop ecosystem known for its speed and versatility. You’ll start by understanding why Spark is a game-changer in big data. The module will cover Resilient Distributed Datasets (RDDs) and Datasets, showing you how to use them to analyze movie ratings data. You'll also delve into Spark's machine learning library (MLLib) to create a movie recommendation system. Through hands-on activities, you'll practice writing Spark scripts and refining your data analysis skills.

Das ist alles enthalten

8 Videos

In this module, we will explore the integration of relational datastores with Hadoop, focusing on Apache Hive and MySQL. You'll start by learning how Hive enables SQL queries on data within HDFS, followed by hands-on activities to find popular and highly-rated movies using Hive. The module also covers the installation and integration of MySQL with Hadoop, using Sqoop to seamlessly transfer data between MySQL and Hadoop's HDFS/Hive. Through practical exercises, you'll gain proficiency in managing and querying relational data within the Hadoop ecosystem.

Das ist alles enthalten

9 Videos

In this module, we will explore the use of non-relational (NoSQL) data stores within the Hadoop ecosystem. You'll learn why NoSQL databases are crucial for scalability and efficiency, and dive into specific technologies like HBase, Cassandra, and MongoDB. Through a series of activities, you'll practice importing data into HBase, integrating it with Pig, and using Cassandra and MongoDB alongside Spark. The module concludes with exercises to help you choose the most suitable NoSQL database for different scenarios, empowering you to make informed decisions in big data management.

Das ist alles enthalten

12 Videos1 Aufgabe

In this module, we will focus on interactive querying tools that allow you to quickly access and analyze big data across multiple sources. You'll explore technologies like Drill, Phoenix, and Presto, learning how each one solves specific challenges in querying large datasets. The module includes hands-on activities where you'll set up these tools, execute queries that span across databases such as MongoDB, Hive, HBase, and Cassandra, and integrate these tools with other Hadoop ecosystem components. By the end of this module, you'll be equipped to perform efficient, real-time data analysis across varied data stores.

Das ist alles enthalten

9 Videos

In this module, we will explore the critical components involved in managing a Hadoop cluster. You'll learn about YARN's resource management capabilities, how Tez optimizes task execution using Directed Acyclic Graphs, and the differences between Mesos and YARN. We'll dive into ZooKeeper for maintaining reliable operations and Oozie for orchestrating complex workflows. Hands-on activities will guide you through setting up and using Zeppelin for interactive data analysis and using Hue for a more user-friendly interface. The module also touches on other noteworthy technologies like Chukwa and Ganglia, providing a comprehensive understanding of cluster management in Hadoop.

Das ist alles enthalten

13 Videos

In this module, we will explore the essential tools for feeding data into your Hadoop cluster, focusing on Kafka and Flume. You'll learn how Kafka supports scalable and reliable data collection across a cluster and how to set it up to publish and consume data. Additionally, you'll discover how Flume's architecture differs from Kafka and how to use it for real-time data ingestion. Through hands-on activities, you'll configure Kafka to monitor Apache logs and Flume to watch directories, publishing incoming data into HDFS. These skills will help you manage and process streaming data effectively in your Hadoop environment.

Das ist alles enthalten

6 Videos1 Aufgabe

In this module, we will focus on analyzing streams of data using real-time processing frameworks such as Spark Streaming, Apache Storm, and Flink. You’ll start by learning how Spark Streaming processes micro-batches of data in real-time and participate in activities that include analyzing web logs streamed by Flume. The module then introduces Apache Storm and Flink, providing hands-on exercises to implement word count applications with these tools. By the end of this module, you will be able to build continuous applications that efficiently process and analyze streaming data.

Das ist alles enthalten

8 Videos

In this module, we will focus on designing and implementing real-world systems using a combination of Hadoop ecosystem tools. You'll start by exploring additional technologies like Impala, NiFi, and AWS Kinesis, learning how they fit into broader Hadoop-based solutions. The module then guides you through the process of understanding system requirements and designing applications that consume and analyze large-scale data, such as web server logs or movie recommendations. By the end of this module, you’ll be equipped to design and build complex, efficient, and scalable data systems tailored to specific business needs.

Das ist alles enthalten

7 Videos1 Aufgabe

In this final module, we will provide you with a selection of books, online resources, and tools recommended by the author to further your knowledge of Hadoop and related technologies. This module serves as a guide for continued learning, offering you the means to stay updated with the latest developments in the Hadoop ecosystem and expand your skills beyond this course.

Das ist alles enthalten

1 Video1 Aufgabe

Dozent

Packt - Course Instructors
Packt
375 Kurse25.243 Lernende

von

Packt

Empfohlen, wenn Sie sich für Data Management interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen