Johns Hopkins University
Reliability, Cloud Computing and Machine Learning

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Johns Hopkins University

Reliability, Cloud Computing and Machine Learning

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 20 Stunden
3 Wochen bei 6 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel

Empfohlene Erfahrung

Es dauert 20 Stunden
3 Wochen bei 6 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Was Sie lernen werden

  • Learn transaction management principles, including ACID properties, concurrency control, and deadlock management techniques for distributed systems.

  • Explore reliability protocols, recovery algorithms, and commit protocols like ARIES, ensuring data consistency and durability.

  • Understand cloud computing with Hadoop, utilizing MapReduce for large-scale data processing, and apply machine learning techniques like clustering.

Kompetenzen, die Sie erwerben

  • Kategorie: Data Warehousing
  • Kategorie: Transaction Management and Concurrency Control
  • Kategorie: Reliability Protocols
  • Kategorie: Hadoop and MapReduce
  • Kategorie: Machine Learning Applications

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Dezember 2024

Bewertungen

8 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Platzhalter

Erweitern Sie Ihre Fachkenntnisse

Dieser Kurs ist Teil der Spezialisierung Spezialisierung Large-Scale Database Systems
Wenn Sie sich für diesen Kurs anmelden, werden Sie auch für diese Spezialisierung angemeldet.
  • Lernen Sie neue Konzepte von Branchenexperten
  • Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
  • Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
  • Erwerben Sie ein Berufszertifikat zur Vorlage
Platzhalter
Platzhalter

Erwerben Sie ein Karrierezertifikat.

Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.

Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.

Platzhalter

In diesem Kurs gibt es 4 Module

This course examines advanced distributed database topics, focusing on transaction management, reliability protocols, and data warehousing. This course also continues developing the MapReduce and HDFS concepts introduced in the last course and applying them to large-scale analytics and machine learning applications within distributed systems. Learners will explore the essential components for maintaining database reliability. In addition, it will dive deeper into cloud-based data processing with Hadoop, and develop foundational skills in analytics as well as machine learning applications using collaborative filtering, clustering, and classification techniques.

Das ist alles enthalten

2 Lektüren

This module explores transaction management in distributed database systems, focusing on concurrency control methods. You will learn to identify ACID properties to maintain database consistency, develop transaction plans with operations and partial orderings, and implement various concurrency control and deadlock management algorithms, including two-phase locking and time-based techniques.

Das ist alles enthalten

11 Videos5 Lektüren3 Aufgaben

This module explores reliability protocols in distributed databases, focusing on maintaining consistency and durability during system failures. Key recovery and reliability protocols, including ARIES, two-phase, and three-phase commit, are covered. In addition, students will gain foundational knowledge of data warehousing principles, along with an introduction to Accumulo architecture. This includes basic Accumulo functionalities and cell-level security mechanisms essential for large-scale distributed data management.

Das ist alles enthalten

6 Videos7 Lektüren3 Aufgaben

This module introduces core cloud computing principles with a focus on the Hadoop ecosystem and its utility for large-scale data processing. Emphasizing the MapReduce framework, learners will explore pseudocode development and architecture. The module also integrates foundational machine learning concepts, specifically clustering, classification, and collaborative filtering algorithms using Mahout and Accumulo. These techniques equip learners to perform scalable data analysis and build recommendation systems within Hadoop, suitable for managing and analyzing large datasets.

Das ist alles enthalten

1 Video5 Lektüren2 Aufgaben

Dozent

David Silberberg
Johns Hopkins University
3 Kurse39 Lernende

von

Empfohlen, wenn Sie sich für Data Management interessieren

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Platzhalter

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen