The course "Responsible AI and Ethics" explores the ethical, social, and technical aspects of artificial intelligence (AI) and machine learning (ML). It focuses on understanding bias in both human and machine systems and provides strategies for mitigating risks. By examining key issues such as fairness, accountability, and the regulatory landscape, learners will gain essential knowledge to navigate the ethical challenges in AI. Through case studies and real-world examples, students will explore the complexities of AI implementations, assessing their impact on society and industries.
Responsible AI and Ethics
Dieser Kurs ist Teil von Spezialisierung AI Strategy and Project Management
Dozent: Ian McCulloh
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Understand the sources and trade-offs of bias in both human and AI systems, and learn strategies for mitigating these biases in AI implementations.
Explore ethical frameworks for responsible AI, focusing on transparency, fairness, and accountability, and gain knowledge of laws surrounding AI.
Analyze real-world AI case studies to identify strengths and weaknesses in AI adoption, and understand the considerations for managing AI projects.
Kompetenzen, die Sie erwerben
- Kategorie: Risk Management in AI
- Kategorie: Ethical Decision-Making in AI
- Kategorie: Critical Analysis of AI Case Studies
- Kategorie: Legal and Regulatory Compliance in AI
- Kategorie: Bias Detection and Mitigation
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
Dezember 2024
9 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 4 Module
In this course, you will explore the ethical, social, and technical aspects of Artificial Intelligence (AI) and Machine Learning (ML), focusing on sources of bias, risk mitigation strategies, and the regulatory landscape. You'll examine the trade-offs between human and machine biases, AI team dynamics, and emerging labor trends. The key topics of this course include responsible AI use, legal frameworks, and the impact of evaluation methods on team performance. you will gain practical insights into building fairer, more effective AI systems through case studies and discussions.
Das ist alles enthalten
1 Lektüre1 Plug-in
This module introduces you to the concept of bias in Artificial Intelligence. While there has been much publicity and attention on the topic of machine bias, it often ignores human bias. In this module, you will compare human and machine bias to enable a more fair assessment of risk in AI systems. Specific attention will be paid to Machine Learning bias, algorithm bias, human bias, measurement bias, and algorithmic drift.
Das ist alles enthalten
7 Videos5 Lektüren3 Aufgaben1 Plug-in
This module introduces you to the complex topic of responsible AI. The common “risk-based approach” will be contrasted with the more ethical “human baseline approach.” You will also cover fiscal/performance responsibility, international regulations, privacy, and legal considerations.
Das ist alles enthalten
8 Videos3 Lektüren3 Aufgaben3 Plug-ins
This AI case studies module offers you practical insights into AI's transformative power across various applications. You will explore successful integrations and lessons from AI's challenges, focusing on decision-making, implementation, and outcomes. Real-world examples will help you understand critical success factors and avoid potential pitfalls in AI adoption.
Das ist alles enthalten
6 Videos6 Lektüren3 Aufgaben
Dozent
Empfohlen, wenn Sie sich für Machine Learning interessieren
Northeastern University
Duke University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.