The art of uncovering the insights and trends in data has been around since ancient times. The ancient Egyptians used census data to increase efficiency in tax collection and they accurately predicted the flooding of the Nile river every year. Since then, people working in data science have carved out a unique and distinct field for the work they do. This field is data science. In this course, we will meet some data science practitioners and we will get an overview of what data science is today.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
(21 Bewertungen)
Was Sie lernen werden
Define data science and its importance in today’s data-driven world.
Describe the various paths that can lead to a career in data science.
Describe the advice given by seasoned data science professionals to data scientists who are just starting out.
Explain why data science is considered the sexiest job in the 21st century.
Kompetenzen, die Sie erwerben
- Kategorie: Big Data
- Kategorie: Analytics
- Kategorie: Deep Learning
- Kategorie: regression
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
6 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Erwerben Sie ein Karrierezertifikat.
Fügen Sie diese Qualifikation zur Ihrem LinkedIn-Profil oder Ihrem Lebenslauf hinzu.
Teilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung.
In diesem Kurs gibt es 3 Module
이 모듈에서는 이 과정에서 학습할 내용을 알아보기 위해 과정 계획서를 살펴봅니다. 또한 데이터 과학 전문가로부터 데이터 과학의 정의, 데이터 과학자가 하는 일, 데이터 과학자가 매일 사용하는 도구 및 알고리즘에 대해 들어봅니다. 마지막으로, 문서 과제를 완료하여 데이터 과학이 21세기 가장 매력적인 직업으로 여겨지는 이유를 알아봅니다.
Das ist alles enthalten
7 Videos5 Lektüren2 Aufgaben1 Diskussionsthema2 Plug-ins
이 모듈에서는 New York University의 Stern Center for Research Computing 학부장인 Norman White가 데이터 과학과 이 분야에서 경력을 쌓는 데 관심이 있는 사람에게 필요한 기술에 대해 이야기하고, 데이터 과학 분야에서 경력을 시작하려는 사람들에게 조언을 제공합니다. 마지막으로, 문서 과제를 완료하여 주어진 데이터 세트를 마이닝하는 과정과 회귀 분석에 대해 학습해야 합니다.
Das ist alles enthalten
7 Videos2 Lektüren2 Aufgaben
이 모듈에서는 기업이 데이터 과학을 시작하기 위해 무엇을 해야 하는지에 대해 배웁니다. 데이터 과학자를 다른 전문가와 구별하는 몇 가지 자질에 대해서도 배우게 됩니다. 또한 분석과 이 프로세스에서 데이터 과학자가 수행하는 중요한 역할, 스토리텔링 및 효과적인 최종 결과물의 중요성에 대해 배우게 됩니다. 마지막으로 주관식 질문에 답하여 데이터 과학에 대해 배운 내용을 적용해야 합니다.
Das ist alles enthalten
3 Videos2 Lektüren2 Aufgaben1 peer review
Empfohlen, wenn Sie sich für Data Analysis interessieren
Northeastern University
Coursera Project Network
University of Washington
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.