In this lesson we will built this Support Vector Machine for classification using scikit-learn and the Radial Basis Function (RBF) Kernel. Our training data set contains continuous and categorical data from the UCI Machine Learning Repository to predict whether or not a patient has heart disease.
Schenken Sie Ihrer Karriere Coursera Plus mit einem Rabatt von $160 , der jährlich abgerechnet wird. Sparen Sie heute.
Support Vector Machines in Python, From Start to Finish
Dozent: Josh Starmer
5.496 bereits angemeldet
Bei enthalten
(153 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Import data into, and manipulating a pandas dataframe
Format the data for a support vector machine, including One-Hot Encoding and missing data.
Optimize parameters for the radial basis function and classification
Build, evaluate, draw and interpret a support vector machine
Kompetenzen, die Sie festigen
- Kategorie: Data Science
- Kategorie: Python Programming
- Kategorie: Machine Learning
- Kategorie: Support Vector Machine (SVM)
- Kategorie: classification
Wichtige Details
Zu Ihrem LinkedIn-Profil hinzufügen
Nur als Desktop-Version verfügbar
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
Lernen, üben und anwenden von berufsrelevanten Fähigkeiten in weniger als 2 Stunden
- Nehmen Sie an Schulungen von Branchenexperten teil
- Sammeln Sie mit Aufgaben aus der realen Welt praktische Erfahrung
- Schaffen Sie Vertrauen durch neueste Tools und Technologien
Über dieses begleitete Projekt
Schritt für Schritt lernen
In einem Video, das auf einer Hälfte Ihres Arbeitsbereichs abgespielt wird, führt Sie Ihr Dozent durch diese Schritte:
Import the modules that will do all the work (4 min)
Import the data (3 min)
Missing Data Part 1: Identifying Missing Data (4 min)
Missing Data Part 2: Dealing With Missing Data (5 min)
Format Data Part 1: Split the Data into Dependent and Independent Variables (3 min)
Format the Data Part 2: One-Hot Encoding (11 min)
Format the Data Part 3: Centering and Scaling (2 min)
Build A Preliminary Support Vector Machine (2 min)
Optimize SVM with Cross Validation (2 min)
Building, Evaluating, Drawing, and Interpreting the Final Support Vector Machine (10 min)
Empfohlene Erfahrung
Some Python and the concepts behind Support Vector Machines, the Radial Basis Function, Regularization, Cross Validation and Confusion Matrices.
10 Projektbilder
Dozent
Was Sie beim Lernen erwartet
Auf Kompetenzen basierendes, praktisches Lernen
Üben Sie die Anwendung neuer Kompetenzen anhand von berufsbezogenen Aufgabenstellungen.
Anleitung durch Experten
Lernen Sie mit vorab von Experten aufgezeichneten Videos in einer einzigartigen aufgeteilten Oberfläche.
Keine Downloads oder Installation erforderlich
Greifen Sie in einem vordefinierten Cloud-Arbeitsbereich auf die Tools und Ressourcen zu.
Nur für Desktop verfügbar
Dieses begleitete Projekt ist für die Bearbeitung an einem Laptop oder Desktop-Computer mit stabiler Internetverbindung konzipiert und nicht für Mobilgeräte.
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 153
153 Bewertungen
- 5 stars
75,16 %
- 4 stars
16,33 %
- 3 stars
7,18 %
- 2 stars
0,65 %
- 1 star
0,65 %
Geprüft am 16. Sep. 2020
Geprüft am 8. Juni 2020
Geprüft am 20. Juli 2020
Ihnen könnte auch Folgendes gefallen:
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Mit dem Kauf eines angeleiteten Projekts erhalten Sie alles, was Sie zum Abschließen des angeleiteten Projekts benötigen, einschließlich des Zugriffs auf einen Cloud-Desktop-Arbeitsbereich über Ihren Webbrowser, der die Dateien und Software enthält, die Sie für den Start benötigen, sowie schrittweise Videoanweisungen von einem Fachexperten.
Da Ihr Arbeitsbereich einen Cloud-Desktop enthält, der für einen Laptop oder Desktop-Computer ausgelegt ist, sind angeleitete Projekte auf Ihrem Mobilgerät nicht verfügbar.
Die Dozenten bei angeleiteten Projekten sind Fachexperten, die Erfahrung in den Fähigkeiten, Werkzeugen oder Bereichen der jeweiligen Projekte haben und leidenschaftlich daran interessiert sind, ihr Wissen weiterzugeben und so Millionen von Lernenden auf der ganzen Welt zu beeinflussen.