The course "Advanced Probability and Statistical Methods" provides a deep dive into advanced probability and statistical methods, essential for mastering data analysis in computer science. Covering joint distributions, expectation, statistical testing, and Markov chains, you'll explore key concepts and techniques that underpin modern data-driven decision-making. By engaging with real-world problems, you’ll learn to apply these methods effectively, gaining insights into the relationships between random variables and their applications in diverse fields.
Advanced Probability and Statistical Methods
Ce cours fait partie de Spécialisation Statistical Methods for Computer Science
Instructeurs : Ian McCulloh
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Learn to analyze relationships between random variables through joint probability distributions and independence concepts.
Understand how to calculate and interpret expected values, variances, and correlations for random variables.
Acquire essential skills in conducting statistical tests, including T-tests and confidence intervals, for data analysis.
Explore the principles of Markov chains and their applications in modeling systems with memoryless properties and calculating entropy.
Compétences que vous acquerrez
- Catégorie : Joint Probability Analysis
- Catégorie : Statistical Inference
- Catégorie : Expectation Calculations
- Catégorie : Application of Limit Theorems
- Catégorie : Markov Chain Modeling
Détails à connaître
Ajouter à votre profil LinkedIn
octobre 2024
22 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
This course provides a comprehensive overview of probability theory and statistical inference, covering joint probability distributions, independence, and conditional distributions. Students will explore expected values, variances, and key statistical theorems, including the central limit theorem. Hypothesis testing, regression analysis, and stochastic processes such as Poisson processes and Markov chains will also be examined. Through practical applications and problem-solving, participants will gain essential skills in data analysis and interpretation.
Inclus
2 lectures1 plugin
This module presents the joint distributions of multiple random variables, both discrete and continuous and introduces the concept of independence.
Inclus
9 vidéos4 lectures5 devoirs1 laboratoire non noté
This module focuses on the expectation of a random variable and joint random variable. Students will solve problems using the linearity of expectation and identify when its application is inappropriate. We will also explore variance, covariance, and correlation.
Inclus
7 vidéos3 lectures4 devoirs1 laboratoire non noté
This module will apply several limit theorems to solve problems to include the central limit theorem, the Markov inequality, and the Chebyshev inequality. We will also prove Murphy’s Law.
Inclus
9 vidéos4 lectures5 devoirs1 laboratoire non noté
This module develops student proficiency in probabilistic models to include Markov chains. Students will be introduced to problems involving surprise, uncertainty, and entropy.
Inclus
4 vidéos2 lectures3 devoirs1 laboratoire non noté
This module develops student proficiency in probabilistic models to include Markov chains. Students will be introduced to problems involving surprise, uncertainty, and entropy.
Inclus
8 vidéos4 lectures5 devoirs1 laboratoire non noté
Instructeurs
Offert par
Recommandé si vous êtes intéressé(e) par Probability and Statistics
Johns Hopkins University
CertNexus
University of London
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.