University of California, Davis
Analytical Solutions to Common Healthcare Problems

Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

University of California, Davis

Analytical Solutions to Common Healthcare Problems

Brian Paciotti

Instructeur : Brian Paciotti

5 736 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.6

(27 avis)

niveau Intermédiaire
Certaines connaissances prérequises
10 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.6

(27 avis)

niveau Intermédiaire
Certaines connaissances prérequises
10 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

4 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Health Information Literacy for Data Analytics
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

In this module, you will explain why comparing healthcare providers with respect to quality can be beneficial, and what types of metrics and reporting mechanisms can drive quality improvement. You'll recognize the importance of making quality comparisons fairer with risk adjustment and be able to defend this methodology to healthcare providers by stating the importance of clinical and non-clinical adjustment variables, and the importance of high-quality data. You will distinguish the important conceptual steps of performing risk-adjustment; and be able to express the serious nature of medical errors within the US healthcare system, and communicate to stakeholders that reliable performance measures and associated interventions are available to help solve this tremendous problem. You will distinguish the traits that help categorize people into the small group of super-utilizers and summarize how this population can be identified and evaluated. You'll inform healthcare managers how healthcare fraud differs from other types of fraud by illustrating various schemes that fraudsters use to expropriate resources. You will discuss analytical methods that can be applied to healthcare data systems to identify potential fraud schemes.

Inclus

8 vidéos1 lecture1 devoir3 sujets de discussion

In this module, you will define clinical identification algorithms, identify how data are transformed by algorithm rules, and articulate why some data types are more or less reliable than others when constructing the algorithms. You will also review some quality measures that have NQF endorsement and that are commonly used among health care organizations. You will discuss how groupers can help you analyze a large sample of claims or clinical data. You'll access open source groupers online, and prepare an analytical plan to map codes to more general and usable diagnosis and procedure categories. You will also prepare an analytical plan to map codes to more general and usable analytical categories as well as prepare a value statement for various commercial groupers to inform analytic teams what benefits they can gain from these commercial tools in comparison to the licensing and implementation costs.

Inclus

7 vidéos1 devoir1 sujet de discussion

In this module, you will describe logical processes used by database and statistical programmers to extract, transform, and load (ETL) data into data structures required for solving medical problems. You will also harmonize data from multiple sources and prepare integrated data files for analysis.

Inclus

6 vidéos1 devoir1 sujet de discussion

In this module, you will describe to an analytical team how risk stratification can categorize patients who might have specific needs or problems. You'll list and explain the meaning of the steps when performing risk stratification. You will apply some analytical concepts such as groupers to large samples of Medicare data, also use the data dictionaries and codebooks to demonstrate why understanding the source and purpose of data is so critical. You will articulate what is meant by the general phase -- “Context matters when analyzing and interpreting healthcare data.” You will also communicate specific questions and ideas that will help you and others on your analytical team understand the meaning of your data.

Inclus

7 vidéos1 lecture1 devoir1 évaluation par les pairs2 sujets de discussion

Instructeur

Brian Paciotti
University of California, Davis
2 Cours19 704 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Health Informatics

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’

Avis des étudiants

Affichage de 3 sur 27

4.6

27 avis

  • 5 stars

    70,37 %

  • 4 stars

    22,22 %

  • 3 stars

    3,70 %

  • 2 stars

    3,70 %

  • 1 star

    0 %

RT
5

Révisé le 5 janv. 2020

AA
4

Révisé le 25 juin 2020

SC
5

Révisé le 17 janv. 2020

Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions