El presente curso tiene como objetivo presentar los métodos y técnicas básicos para el procesamiento y análisis de datos en el contexto de Big Data. No prentende ser un curso exhaustivo sobre Machine Learning ni sobre métodos Estadísticos, simplemente se pretenden mostrar las características principales de estas técnicas para que el alumno pueda tener una visión general de las opciones que ofrece el análisis de datos para poder explorar, confirmar indicios y en definitiva, extraer conclusiones.
Big Data: procesamiento y análisis
Ce cours fait partie de Spécialisation Big Data – Introducción al uso práctico de datos masivos
Instructeurs : Llorenç Badiella
15 211 déjà inscrits
Inclus dans le site
(259 avis)
Détails à connaître
Ajouter à votre profil LinkedIn
27 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 7 modules dans ce cours
Inclus
2 vidéos8 lectures
<b>ATENCIÓN: Si ya te instalaste la máquina virtual en el curso anterior de la Especialización no es necesario que vuelvas a hacerlo. En caso contrario, sigue leyendo.</b><br><br>Los ejercicios y sesiones prácticas pretenden mostrar un caso práctico de procesamiento y análisis de datos en el contexto de Big Data. En este sentido, será necesario trabajar con una máquina virtual que ya trae configuradas e instaladas una serie de componentes habituales al manejar Big Data. En este apartado te explicamos cómo descargar e instalar la máquina virtual Cloudera en tu ordenador. La MV-Cloudera requiere disponer de un equipo con las siguientes características: (1) máquina de 64 bits, (2) mínimo 6G de memoria (recomendable 8G), y (3) 20G disponibles en disco.<br><br> <i><b>Ten en cuenta que bajar e instalar la máquina virtual te llevará tiempo dado el tamaño y complejidad de la misma</i></b>
Inclus
4 vidéos4 lectures
Para poder seguir la parte aplicada del curso, responder a los cuestionarios y trabajar con las herramientas que te explicamos, necesitarás acceder a una serie de ficheros de código, así como las bases de datos de trabajo, que hemos recopilado y comprimido. Verás que algunos vídeos llevan un código entre paréntesis que coincide con el nombre de alguno de estos ficheros. Esto significa que en el vídeo correspondiente se trabaja con dicho fichero. <br><br>A continuación te explicamos como incorporarlos en la máquina virtual.
Inclus
2 lectures
Durante la primera semana del curso se introducen el curso y las herramientas que se emplearán. Además también se presentan las tareas relacionadas con el Análisis Exploratorio de Datos. Cada pocos temas tratados en los vídeos encontrarás un pequeño custionario de 5 preguntas. <br><br><i>Visualiza los vídeos, contesta los cuestionarios tantas veces como quieras, y accede a los foros para discutir los temas que te parezcan más interesantes.</i>
Inclus
10 vidéos6 devoirs
En el módulo 2 del curso se introducen conceptos de modelización generales (calibración y validación) y en particular los modelos de regresión lineal y regresión logística. Desde la perspectiva de Big Data, se incluyen aspectos relacionados con la regularización de los modelos para su simplificación. <br><br><i>Como en el módulo anterior, visualiza los vídeos, contesta los cuestionarios tantas veces como quieras, y accede a los foros para discutir los temas que te parezcan más interesantes.</i>
Inclus
10 vidéos7 devoirs
En el módulo 3 del curso se introduce la família de modelos basada en árboles (clasificación, regresión, bosques) y aspectos generales sobre la incertidumbre y el sobreajuste. Después de cada tema, o de unos pocos temas, encontrarás un cuestionario para comprobar tu nivel de comprensión de los mismos.<br><br><i>Visualiza los vídeos, contesta los cuestionarios tantas veces como quieras, y accede a los foros para discutir los temas que te parezcan más interesantes.</i>
Inclus
10 vidéos7 devoirs
En el módulo 4 del curso se introduce la família de modelos basada en redes neuronales así como se introducen las técnicas básicas no supervisadas, tanto de clasificación automática como de reducción de la dimensionalidad. En este módulo, además de los cuestionarios convencionales, tendrás que realizar un trabajo práctico en el que trabajarás las técnicas aprendidas hasta el momento.<br><br><i>Visualiza los vídeos, contesta los cuestionarios tantas veces como quieras, realiza el ejercicios práctico, y accede a los foros para discutir los temas que te parezcan más interesantes.</i>
Inclus
10 vidéos1 lecture7 devoirs
Instructeurs
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Universidad de los Andes
Arizona State University
Universidad Austral
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 259
259 avis
- 5 stars
55,21 %
- 4 stars
24,71 %
- 3 stars
12,35 %
- 2 stars
5,01 %
- 1 star
2,70 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.