Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Johns Hopkins University

Core Concepts in AI

Ian McCulloh

Instructeur : Ian McCulloh

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

23 heures pour terminer
3 semaines à 7 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

23 heures pour terminer
3 semaines à 7 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Understand core AI and ML concepts, key vocabulary, and the R.O.A.D. Framework for effective AI project management and implementation.

  • Evaluate machine learning models using performance metrics and understand the tradeoffs in algorithm selection and optimization.

  • Analyze AI algorithms like SVM, Decision Trees, and Neural Networks, identifying their strengths, weaknesses, and practical applications.

  • Assess data quality, calculate inter-annotator agreement, and address resource and performance tradeoffs in AI and ML systems.

Compétences que vous acquerrez

  • Catégorie : Machine Learning Evaluation
  • Catégorie : Resource Management in AI Systems
  • Catégorie : Data Quality Assessment
  • Catégorie : Algorithm Analysis and Optimization
  • Catégorie : AI Vocabulary Mastery

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

décembre 2024

Évaluations

15 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation AI Strategy and Project Management
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 6 modules dans ce cours

This course provides a comprehensive introduction to key concepts in artificial intelligence (AI) and machine learning (ML). Learners will explore essential vocabulary, the R.O.A.D. Framework, performance evaluation, and algorithm tradeoffs. Topics include data quality, inter-annotator agreement, and the strengths and weaknesses of AI methods. By the end, learners will be equipped with the foundational knowledge to navigate and assess AI and ML systems effectively.

Inclus

1 lecture1 plugin

This module provides an introduction to artificial intelligence (AI). It does not require any prior knowledge of AI and is suitable for briefing managerial, and non-technical leaders to improve knowledge, expectations, and communication for AI projects.

Inclus

6 vidéos4 lectures3 devoirs

This module covers the statistical foundations of machine learning and the common metrics for evaluating machine learning and artificial intelligence performance.

Inclus

6 vidéos2 lectures3 devoirs

This module introduces the most common algorithms used in AI and machine learning, including support vector machines, Naïve Bayes, decision trees, random forest, and neural networks. We will discuss the strengths and weaknesses of these algorithms for different classes of problems.

Inclus

8 vidéos2 lectures3 devoirs

This module explores data types (nominal, ordinal, categorical) and the challenges of data labeling, including human cognitive limits and reference issues. A key focus is inter-annotator agreement—a method to measure labeling consistency, highlighting biases and inefficiencies in human and machine processes. Consistent labeling, often more impactful than advanced algorithms, is crucial for responsible AI.

Inclus

9 vidéos2 lectures3 devoirs

This module introduces the most common resource considerations in AI, specifically memory, computational tradeoffs, query expressiveness, and algorithm performance.

Inclus

10 vidéos2 lectures3 devoirs

Instructeur

Ian McCulloh
Johns Hopkins University
17 Cours947 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Data Management

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions