This course aims to better develop your statistical toolkit in the world of statistics and data science. You will learn how to collect, manipulate, and transform data in R into a more readily usable format using tidyverse data pipelines, primarily using verbs from the dplyr and tidyr packages. The topics covered provide you with the tools necessary to convert data to be better suited for data visualization (Course 1) and modeling; which is to come in this certificate program in a future course. Additionally, we discuss the topics of web scraping and the considerations one must take prior to scraping data from the web.
Ce que vous apprendrez
Apply tidy data principles to manipulate and restructure data (e.g., subsetting, adding columns, and transforming data between wide and long formats)
Develop and implement code to join data sets and perform basic web scraping to collect data
Apply data structures such as wide and long formats, using code to convert between these formats as part of data preparation and analysis
Compétences que vous acquerrez
- Catégorie : Tidyverse
- Catégorie : Statistical Programming
- Catégorie : R programming
- Catégorie : R Programming
- Catégorie : Data Import/Export
- Catégorie : Exploratory Data Analysis
- Catégorie : tidyverse
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 3 modules dans ce cours
Tidy datasets have a specific structure: each variable is a column, and each observation is a row. In this module, we use functional verbs from the dplyr package in R to transform data into a ready-to-use tidy data format. Additionally, we use functional verbs to manipulate data frames.
Inclus
6 vidéos11 lectures1 devoir2 sujets de discussion1 plugin
A column in our data set can be stored as many different types, such as numbers or characters. These different data types inform how R treats the data, and whether certain functions are compatible to use with certain types of data. In this module, we discuss more in detail, the different data types classified by R, data classes, as well as how to recode variables in a data set to be different types, classes, or take on different values.
Inclus
6 vidéos13 lectures1 devoir1 sujet de discussion1 plugin
Web scraping is the process of extracting this information automatically and transforming it into a structured dataset. In this module, we go over how to perform basic web scraping in R to make an abundance of data online more easily accessible.
Inclus
4 vidéos5 lectures1 devoir2 sujets de discussion1 plugin
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Johns Hopkins University
Johns Hopkins University
Johns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.