Getting data into your statistical analysis system can be one of the most challenging parts of any data science project. Data must be imported and harmonized into a coherent format before any insights can be obtained. You will learn how to get data into R from commonly used formats and harmonizing different kinds of datasets from different sources. If you work in an organization where different departments collect data using different systems and different storage formats, then this course will provide essential tools for bringing those datasets together and making sense of the wealth of information in your organization.
Importing Data in the Tidyverse
Ce cours fait partie de Spécialisation Tidyverse Skills for Data Science in R
Instructeurs : Carrie Wright, PhD
1 897 déjà inscrits
Inclus avec
(44 avis)
Expérience recommandée
Ce que vous apprendrez
Describe different data formats
Apply Tidyverse functions to import data into R from external formats
Obtain data from a web API
Détails à connaître
Ajouter à votre profil LinkedIn
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
A basic data type in the tidyverse is the tibble. Tibbles store tabular data and are a modern take on the standard R data frame. They have many user-friendly features that are an improvement over standard data frames when doing interactive data analysis. The remainder of this module covers tabular data in spreadsheet formats like Excel, CSV, TSV, and other delimited files.
Inclus
15 lectures1 devoir
Data can come in non-tabular formats, especially unstructured data or data that otherwise would not fit into a table. JSON and XML are common formats for storing arbitrarily structured data and this module covers the packages used to read in those data formats. In addition, relational databases are common for storing very large collections of tables where you do not need to read in the entire dataset at once. There are many relational database formats and we will cover the SQLite format, which is a compact and simple to use format.
Inclus
10 lectures1 devoir
Reading in data from various Internet sources can be a useful way to build analyses that need to be regularly updated. The rvest and httr packages are useful for connecting to web sites, web APIs and other online sources of data.
Inclus
11 lectures1 devoir
Working with others in a data science project often involves reading output or data produced using other statistical analysis packages or other software. This module covers packages for reading in these foreign formats, as well as images and data from Google Drive.
Inclus
3 lectures1 devoir
Now we will demonstrate how to import data using our case study examples. When working through the steps of the case studies, you can use either RStudio on your own computer or Coursera lab spaces provided for each case study.
Inclus
11 lectures2 laboratoires non notés
This project will give you the opportunity to read in data from multiple sources and conduct some simple operations on those data.
Inclus
2 lectures1 devoir
Instructeurs
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Duke University
Johns Hopkins University
Johns Hopkins University
Johns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
44 avis
- 5 stars
75,55 %
- 4 stars
20 %
- 3 stars
4,44 %
- 2 stars
0 %
- 1 star
0 %
Affichage de 3 sur 44
Révisé le 22 nov. 2022
Excellent. While there were no lectures, and it is possible to simply read the authors' book, having the quizzes makes the difference between just reading and actually learning. Thanks!
Révisé le 27 mars 2021
Great for beginners. Clearly explained, and easy to follow.
Révisé le 28 janv. 2021
Excellent tutorial for importing data into the tidyverse environment
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.