Northeastern University
Data Warehousing Essentials for Analytics and AI Support

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Northeastern University

Data Warehousing Essentials for Analytics and AI Support

Venkat Krishnamurthy

Instructeur : Venkat Krishnamurthy

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
16 heures pour terminer
3 semaines à 5 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
16 heures pour terminer
3 semaines à 5 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Data Warehousing
  • Catégorie : Data Warehouse Architectures

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

juillet 2024

Évaluations

5 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

This module introduces data warehousing and business intelligence, emphasizing their role in enhancing organizational decision-making. Data warehouses transform raw data into actionable insights using processes like ETL (Extract, Transform, Load), supported by tools such as OLAP for querying and data mining. While operational databases (OLTP) are suited for daily transactions, OLAP databases are optimized for complex analytics. To effectively implement data warehousing solutions, it is essential to understand the underlying database design principles. Therefore, the module reviews key concepts related to operational databases, focusing on conceptual database design. We examine Entity Relationship Diagrams (ERD) as a vital tool for conceptual representation, identifying crucial aspects of the database design process that convert business requirements into a conceptual model. In the subsequent module, we will build on this foundation by reviewing logical modeling and the implementation of databases, equipping students with a comprehensive understanding of both the database design process and OLAP systems. This knowledge will serve as a stepping stone as we explore the complexities of data warehouses.

Inclus

1 vidéo6 lectures1 devoir2 sujets de discussion

This module builds on the foundations of database design from the previous module focussing on relational database modeling, normalization, and SQL. The readings will guide you in translating a conceptual EER diagram into a relational model, ensuring adherence to normalization principles, particularly aiming for the 3rd Normal Form. We’ll also emphasize understanding primary keys and foreign keys for maintaining data integrity and establishing table relationships. Additionally, you will have the opportunity to create and critique relational models. We’ll then explore SQL basics, covering syntax (SELECT, INSERT, UPDATE, DELETE), querying techniques (WHERE, ORDER BY, JOIN), and operations involving functions and aggregates (COUNT, SUM, AVG, MIN, MAX), which are fundamental in database querying and management. By the end of this module, we expect students to be comfortable with database design, which is essential for implementing an OLTP system.

Inclus

2 lectures2 devoirs1 élément d'application1 sujet de discussion

This module provides an introduction to Data Warehouse Concepts. Data warehouses are based on a multidimensional model. We will look closely into the multidimensional model and its representation as data cubes (also known as hypercubes). We’ll examine how different aspects of data are categorized into facts, measures, and dimensions. Dimensions like Product, Time, and Customer are organized hierarchically within a cube, allowing data to be analyzed at various levels of detail.

Inclus

2 vidéos2 lectures1 devoir1 élément d'application1 sujet de discussion

This module continues an introduction to Data Warehouse Concepts. We’ll examine how different aspects of data are categorized into facts, measures, and dimensions. Dimensions like Product, Time, and Customer are organized hierarchically within a cube, allowing data to be analyzed at various levels of detail. Measures such as Quantity and Sales Amount are stored within these cubes, and analysts can navigate through different levels of detail using "rolling up" and "drilling down" techniques. Key concepts like granularity, dimension schema, and member hierarchies are essential in understanding how data is structured and analyzed in multidimensional models. Additionally, principles like disjointness, completeness, and correctness ensure data accuracy and integrity when aggregating information in data cubes, collectively known as summarizability.

Inclus

3 lectures1 devoir

Instructeur

Venkat Krishnamurthy
Northeastern University
1 Cours94 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions