This course introduces you to two of the most sought-after disciplines in Machine Learning: Deep Learning and Reinforcement Learning. Deep Learning is a subset of Machine Learning that has applications in both Supervised and Unsupervised Learning, and is frequently used to power most of the AI applications that we use on a daily basis. First you will learn about the theory behind Neural Networks, which are the basis of Deep Learning, as well as several modern architectures of Deep Learning. Once you have developed a few Deep Learning models, the course will focus on Reinforcement Learning, a type of Machine Learning that has caught up more attention recently. Although currently Reinforcement Learning has only a few practical applications, it is a promising area of research in AI that might become relevant in the near future.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Deep Learning and Reinforcement Learning
Ce cours fait partie de IBM Machine Learning Certificat Professionnel
Instructeurs : Mark J Grover
32 281 déjà inscrits
Inclus avec
(218 avis)
Compétences que vous acquerrez
- Catégorie : Artificial Neural Network
- Catégorie : Reinforcement Learning
- Catégorie : Machine Learning
- Catégorie : Deep Learning
- Catégorie : keras
Détails à connaître
Ajouter à votre profil LinkedIn
24 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise en Machine Learning
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de IBM
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 9 modules dans ce cours
This module introduces Deep Learning, Neural Networks, and their applications. You will go through the theoretical background and characteristics that they share with other machine learning algorithms, as well as characteristics that make them stand out as great modeling techniques for specific scenarios. You will also gain some hands-on practice on Neural Networks and key concepts that help these algorithms converge to robust solutions.
Inclus
16 vidéos1 lecture3 devoirs3 éléments d'application
In this module, you will learn about the maths behind the popular Back Propagation algorithm used to optimize neural networks. In the Back Propagation notebook, you will also see and understand the use of activation functions. The main purpose of most activation function is to introduce non-linearity in the network so it would be capable of learning more complex patterns. Last, but not least, you will learn to use functions and APIs from the Keras library to solve tasks that involve neural networks, and these tasks start with loading images.
Inclus
13 vidéos1 lecture3 devoirs4 éléments d'application
You can leverage several options to prioritize the training time or the accuracy of your neural network and deep learning models. In this module you learn about key concepts that intervene during model training, including optimizers and data shuffling. You will also gain hands-on practice using Keras, one of the go-to libraries for deep learning.
Inclus
6 vidéos1 lecture2 devoirs2 éléments d'application1 plugin
In this module you become familiar with convolutional neural networks, also known as space invariant artificial neural networks, a type of deep neural networks, frequently used in image AI applications. There are several CNN architectures, you will learn some of the most common ones to add to your toolkit of Deep Learning Techniques.
Inclus
9 vidéos1 lecture2 devoirs6 éléments d'application
In this module, you will understand what is transfer learning and how it works. You will implement transfer learning in 5 general steps using a variety of popular pre-trained CNN architectures, such as VGG-16 and ResNet-50. You will study the differences among those CNN architectures and see how the invention of each solves the problem of its predecessors. Last, but not least, as we are moving to working with deeper neural networks, you will also be equipped with regularization techniques to prevent overfitting of complex models and networks.
Inclus
8 vidéos1 lecture4 devoirs4 éléments d'application1 plugin
In this module you become familiar with Recursive Neural Networks (RNNs) and Long-Short Term Memory Networks (LSTM), a type of RNN considered the breakthrough for speech to text recongintion. RNNs are frequently used in most AI applications today, and can also be used for supervised learning.
Inclus
9 vidéos1 lecture3 devoirs5 éléments d'application
In this module you become familiar with Autoencoders, an useful application of Deep Learning for Unsupervised Learning. Autoencoders are a neural network architecture that forces the learning of a lower dimensional representation of data, commonly images. In this module you will learn some Deep learning-based techniques for data representation, how autoencoders work, and to describe the use of trained autoencoders for image applications
Inclus
7 vidéos1 lecture2 devoirs2 éléments d'application1 plugin
In this module, you will learn about two types of generative models, which are Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). We will look at the theory behind each model and then implement them in Keras for generating artificial images. The goal is usually to generate images that are as realistic as possible. In the last lesson of this module, we will touch on additional topics in deep learning, namely using Keras in a GPU environment for speeding up model training.
Inclus
7 vidéos1 lecture3 devoirs4 éléments d'application
In this module you become familiar with other novel applications of Neural Networks. You will learn about Generative Adversarial Networks, frequently referred to as GANs, which are an application of Neural Networks to generate new data. Finally, you learn about Reinforcement Learning, one of the big promises for A.I., based on training algorithms by using rewards, instead of using a method to minimize error, which is what we have been using throughout the course.
Inclus
5 vidéos1 lecture2 devoirs1 évaluation par les pairs1 élément d'application
Instructeurs
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Amazon Web Services
Alberta Machine Intelligence Institute
DeepLearning.AI
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 218
218 avis
- 5 stars
75,68 %
- 4 stars
12,38 %
- 3 stars
6,42 %
- 2 stars
1,83 %
- 1 star
3,66 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.