In this comprehensive course, you'll embark on a journey through the foundational elements and core concepts of PyTorch, one of the most popular deep learning frameworks. Starting with a detailed overview and system setup, you'll be guided through installing and configuring your environment to ensure a smooth learning experience. The course then transitions into the basics of machine learning and artificial intelligence, laying the groundwork for more advanced topics.
Foundations and Core Concepts of PyTorch
Ce cours fait partie de Spécialisation PyTorch Ultimate 2024 - From Basics to Cutting-Edge
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Set up and configure a PyTorch environment.
Understand fundamental AI and machine learning concepts.
Build, train, and evaluate neural networks from scratch, utilizing various optimization techniques
Apply PyTorch to real-world deep learning tasks.
Compétences que vous acquerrez
- Catégorie : Deep Learning
- Catégorie : Machine Learning
- Catégorie : PyTorch (Machine Learning Library)
- Catégorie : neural network
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 7 modules dans ce cours
In this module, we will introduce you to the course structure, covering the main topics and learning objectives. You'll learn how to set up your system, including installing necessary software and creating a conda environment. We'll also guide you on accessing course materials and provide tips for navigating the course efficiently.
Inclus
6 vidéos2 lectures
In this module, we will delve into the basics of machine learning. You will start with an introduction to artificial intelligence and its core concepts. The module will then explore the essentials of machine learning and provide an overview of different machine learning models, laying the groundwork for more advanced topics.
Inclus
3 vidéos
In this module, we will explore the foundational concepts of deep learning. You will gain insights into deep learning models, their performance evaluation, and the evolution from perceptrons to neural networks. The module also covers various types of neural network layers, activation functions, loss functions, and optimization techniques, providing a robust understanding of deep learning frameworks.
Inclus
9 vidéos1 devoir
In this module, we will focus on evaluating machine learning models. You will learn about underfitting and overfitting, and how to mitigate these issues. The module will also cover the train-test split method and its importance in model evaluation, along with various resampling techniques to manage imbalanced datasets effectively.
Inclus
3 vidéos
In this module, we will guide you through the process of constructing a neural network from scratch. You will start with data preparation and model initialization and proceed to implement essential functions such as forward and backward propagation. The module also covers training and evaluation techniques to help you build and assess your neural network model effectively.
Inclus
12 vidéos1 devoir
In this module, we will explore the concept of tensors and their significance in PyTorch. You will learn about the relationship between tensors and computational graphs and gain hands-on experience with tensor operations through coding exercises. This module aims to equip you with the skills to apply tensors in real-world machine learning scenarios.
Inclus
3 vidéos
In this module, we will introduce you to PyTorch modeling. You will learn to build and train models from scratch, including linear regression. The module covers batch processing, datasets, and dataloaders to manage data effectively. You will also explore techniques for saving, loading, and optimizing models, including hyperparameter tuning, to enhance your machine learning workflow.
Inclus
15 vidéos1 lecture2 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.