Illinois Tech
Data Preparation and Analysis

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Illinois Tech

Data Preparation and Analysis

Ming-Long Lam
Jawahar Panchal

Instructeurs : Ming-Long Lam

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

79 heures pour terminer
3 semaines à 26 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

79 heures pour terminer
3 semaines à 26 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme

Ce que vous apprendrez

  • 1. Apply appropriate techniques for generating insights from data.

    2. Present actionable solutions with confidence to the business stakeholders.

Compétences que vous acquerrez

  • Catégorie : Association Rule Learning
  • Catégorie : Logistic Regression
  • Catégorie : Decision Tree Learning
  • Catégorie : Linear Regression
  • Catégorie : K-Means Clustering

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

32 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 9 modules dans ce cours

Welcome to Data Preparation and Analysis! Module 1 guides students through the art of crafting informative and visually appealing histograms, a fundamental aspect of data visualization. Students will learn techniques for measuring the location and scale of data, understanding the origins and impacts of noise and missing values in datasets. This module also introduces the CRISP-DM Process, a structured approach to data mining, along with Gartner's Analytics Ascendancy Model for advanced data analysis. Additionally, students will explore the distinction between raw data and processed information, a key concept for effective data interpretation and decision-making.

Inclus

10 vidéos7 lectures4 devoirs1 sujet de discussion1 laboratoire non noté

Module 2 delves into the intricacies of statistical analysis, beginning with a thorough understanding of the p-value concept and its significance as a Type I Error indicator. Students will learn to apply statistical tests in Python to identify significantly correlated features, exploring various correlation metrics tailored for categorical, mixed-type, and continuous features. This module emphasizes practical application, equipping students with the skills to calculate and interpret these metrics using Python, thereby enhancing their ability to conduct sophisticated data analysis and draw meaningful conclusions from complex datasets.

Inclus

7 vidéos5 lectures4 devoirs1 laboratoire non noté

Module 3 offers a deep dive into the world of Association Rules, teaching students how to improvise these rules for identifying valuable feature combinations that generate specific label values. Learners will master setting appropriate thresholds for Support and Confidence and gain a comprehensive understanding of the Apriori Algorithm and the significance of Frequent Itemsets within it. This module covers the calculation of common metrics for Association Rules, familiarizing students with the relevant terminology. Additionally, learners will explore the practical application of Association Rules in Market Basket Analysis, including strategies for cross-selling, up-selling, and product bundling, equipping them with valuable skills for advanced data-driven decision making in business contexts.

Inclus

7 vidéos5 lectures3 devoirs1 laboratoire non noté

In Module 4, students will learn how to describe and interpret profiles of clusters, gaining proficiency in deploying the K-Means and K-Modes clustering algorithms. They will explore the application of Recency, Frequency, and Monetary (RFM) Analysis to identify the most valuable customers in retail business settings. The module also covers the technique of Simple Random Sampling with the option of incorporating stratification variables, enhancing the precision of data analysis. Furthermore, it emphasizes the importance of objectively validating models using a testing partition, ensuring the reliability and effectiveness of the analytical models in real-world scenarios.

Inclus

8 vidéos5 lectures4 devoirs1 laboratoire non noté

This module delves into feature importance analysis in machine learning, covering Shapley Values, feature selection methods, statistical evaluation, feature interaction, aliasing, and the Least Squares Algorithm. Students will be able to master these concepts to build robust and interpretable models.

Inclus

8 vidéos5 lectures4 devoirs1 laboratoire non noté

In Module 6, students will master the art of feature selection in machine learning by exploring the Forward and Backward Selection Method, the All-Possible Subsets Method, and the concept of complete and quasi-complete separation. Students will also discover association rules for identifying separations, interpret model parameters and predicted probabilities, and delve into the concepts of maximum likelihood estimation, odds, and odds ratios.

Inclus

6 vidéos5 lectures4 devoirs1 laboratoire non noté

Module 7 will equip students wth the ability to harness the power of tree-based models to uncover hidden patterns in your data. Students will be able to describe clusters effectively, intelligently set algorithm parameters, construct business rules from tree results, and utilize variance metrics, entropy values, and Gini indices for optimal tree construction.

Inclus

7 vidéos5 lectures4 devoirs1 laboratoire non noté

Module 8 delves into the realm of evaluation metrics for machine learning models. Students will master the concepts of precision and recall curves, lift curves, and receiver operating characteristics (ROC) curves. Additionally, students will obtain the ability to discover methods for calculating probability thresholds using Kolmogorov-Smirnov statistics and F1 scores. They will be able to explore metrics like misclassification rate, area under the curve (AUC), and root mean squared error (RMSE), along with techniques for computing RMSE and detecting severely misfitted observations using model-specific residuals.

Inclus

8 vidéos5 lectures4 devoirs1 laboratoire non noté

This module contains the summative course assessment that has been designed to evaluate your understanding of the course material and assess your ability to apply the knowledge you have acquired throughout the course. Be sure to review the course material thoroughly before taking the assessment.

Inclus

1 devoir

Instructeurs

Ming-Long Lam
Illinois Tech
1 Cours921 apprenants
Jawahar Panchal
Illinois Tech
1 Cours921 apprenants

Offert par

Illinois Tech

Recommandé si vous êtes intéressé(e) par Data Analysis

Préparer un diplôme

Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par Illinois Tech. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions