This course starts with an introduction to Python programming, covering everything from installation and setup of Python and Anaconda to fundamental concepts such as variables, numeric and logical operations, control structures like if-else and loops, and defining functions. The journey continues with in-depth modules on strings and lists, ensuring a solid understanding of these core components.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Python Fundamentals and Data Science Essentials
Ce cours fait partie de Spécialisation Deep Learning with Real-World Projects
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Run Python programs for tasks using numeric operations, control structures, and functions.
Analyze data with NumPy and Pandas for comprehensive data insights.
Evaluate the performance of linear regression and KNN classification models.
Develop optimized machine learning models using gradient descent.
Compétences que vous acquerrez
- Catégorie : NumPy
- Catégorie : Python (Programming Language)
- Catégorie : KNN
- Catégorie : Machine Learning
- Catégorie : Pandas (Python Package)
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 10 modules dans ce cours
In this module, we will cover the essential Python programming concepts needed as a foundation for advanced topics. Starting from installation and basic syntax to detailed explorations of various data structures, this section ensures you have a solid grounding in Python.
Inclus
18 vidéos2 lectures
In this module, we will introduce NumPy, a powerful library for numerical computing in Python. Through a series of hands-on videos, you'll learn to perform essential NumPy operations and leverage its capabilities for data analysis.
Inclus
3 vidéos
In this module, we will dive into Pandas, a key library for data manipulation and analysis in Python. You will learn how to work with Series and DataFrames, perform various operations, and handle real-world data sets efficiently.
Inclus
12 vidéos1 devoir
In this module, we will cover essential linear algebra concepts that are foundational for machine learning. From vectors and matrices to multi-dimensional spaces, you'll gain the mathematical skills necessary for advanced algorithms.
Inclus
5 vidéos
In this module, we will explore data visualization techniques using Matplotlib and Seaborn. Through practical examples and a case study, you'll learn how to create compelling visual representations of data to uncover insights.
Inclus
4 vidéos
In this module, we will cover the basics of simple linear regression, a key statistical technique. Starting from machine learning concepts, you'll learn how linear regression works, the math behind it, and how to apply it through case studies.
Inclus
10 vidéos1 devoir
In this module, we will focus on gradient descent, a crucial optimization algorithm. From understanding cost functions to applying gradient descent in practical scenarios, you'll gain a deep understanding of this essential technique.
Inclus
8 vidéos
In this module, we will delve into the K-Nearest Neighbors (KNN) algorithm for classification. You'll learn the theory behind KNN, its practical applications, and how to measure its performance through various case studies.
Inclus
14 vidéos1 devoir
In this module, we will cover logistic regression, a fundamental classification technique. You'll learn about the Sigmoid function, log odds, and how to apply logistic regression in real-world scenarios through case studies.
Inclus
4 vidéos
In this module, we will explore advanced machine learning algorithms, focusing on regularization techniques and model selection. Through detailed examples and case studies, you'll learn how to apply these advanced methods to improve model performance.
Inclus
10 vidéos1 lecture2 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
University of Leeds
Università di Napoli Federico II
Scrimba
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.