This is part of our specialization on Making Decision in Time. For this third course we start with an intriguing study on SFPark and build new insights into the ideas that flow from this direction. The ending point should bring new code and new algorithm insights into perspective, and use, by many computer and data scientists.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Data Science Decisions in Time: Information Theory & Games
Ce cours fait partie de Spécialisation Data Science Decisions in Time
Instructeur : Thomas Woolf
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : A:B testing
- Catégorie : Adaptive Game Play
- Catégorie : Information Theory
- Catégorie : Zero Sum Games
Détails à connaître
Ajouter à votre profil LinkedIn
août 2024
11 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 6 modules dans ce cours
How should a control be adjusted to best achieve a desired outcome? We introduce the SFPark problem, a real parking management approach being used in SF. The question that we want to understand, via sequential methods and games, is how best to set the prices for spaces, dynamically during the day, to encourage a particular (say 15%) free space availability. The game is between the consumers (looking for parking) and the city (trying to optimize space, reducing those cruising for spaces and encouraging those coming for a meal or for shopping to have a parking space). This is a sequential decision problem that can also be described as a game.
Inclus
3 vidéos1 lecture2 devoirs
Decision making as a shared endeavor rapidly extends game theory into many real world situations and helps us to see how these ideas can be applied to problems that impact all of us. We start with a discussion about water resources and their allocation. This then is tied back to how we think about the classic problem of the prisoner's dilemma.
Inclus
4 vidéos1 lecture2 devoirs
For many real-world settings we are not fully cooperative and may even be playing a game with antagonistic opponents. Understanding an optimal strategy for these settings means paying attention to the moves possible from the opponent and what they mean for your own optimal actions. We start with considerations of cybersecurity and then move into the classic Centipede Game.
Inclus
3 vidéos1 lecture2 devoirs
The game of Diplomacy is a challenge due to the many combinatorial options that can flow from a set of decisions. The game can be quite complex to play and also provides an excellent training ground for computer algorithms. In this part of the course we look at the general nature of complex social interactions and the models for game play that can be used to define optimal policies.
Inclus
3 vidéos1 lecture2 devoirs
In this fifth module we aim to generalize from our study of games as objects in their own right to algorithms and informational settings where the ideas from game theory can inspire new insights and ways to see into large and diverse datasets. We start with a common clinical problem: how to classify a radiological image. As we think about the challenges of this setting, including extracting and seeing the relevant features, we set the frame for our goals with this fifth week. In particular, how can we find the most important, and ideally invariant, features that best describe our problem and that can be used for making decisions.
Inclus
3 vidéos1 lecture2 devoirs
Inclus
1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Probability and Statistics
Johns Hopkins University
Johns Hopkins University
Johns Hopkins University
Johns Hopkins University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.