Este MOOC busca que profesionales de diversas áreas logren analizar críticamente visualizaciones de datos existentes y diseñar visualizaciones de datos efectivas. Por un lado, el proceso de percepción visual ocupa una gran parte de los recursos y del volumen del cerebro, por lo cual es importante comprender sus principios para diseñar e implementar visualizaciones de datos. Por otro lado, un modelo de análisis estructurado y validado por la comunidad científica como el de Munzner permite organizar de forma estructurada el análisis y diseño de visualizaciones. Finalmente, se ponen en práctica estos conceptos con una implementación visual usando un software que no requiere programación.
(13 avis)
Compétences que vous acquerrez
- Catégorie : Implementar visualizaciones de datos básicas usando datos tabulares
- Catégorie : diseñar visualizaciones de datos efectivas aplicando el modelo de Munzner
Détails à connaître
Ajouter à votre profil LinkedIn
8 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
En esta semana introduciremos definiciones y conceptos fundamentales de visualización de datos, así como su relación con la ciencia de datos en general. Veremos ejemplos históricos que motivan el ejercicio de esta área, como el caso de John Snow y de Florence Nightingale en Inglaterra, y el mapa de Jacques Minard en Francia. También, revisaremos casos de uso recientes de visualización que permiten apreciar el potencial de estudiar visualización de datos. Entre los ejemplos, revisaremos algunos aplicados a la comprensión del cambio climático, otros relacionados a visualización analítica de robo de vehículos y a visualizar las contribuciones de la investigación a los objetivos de sostenibilidad de la ONU.
Inclus
4 vidéos4 lectures2 devoirs
Esta semana nos adentramos en aspectos de la visión humana que nos permitirán comprender mejor ciertas decisiones de diseño para visualización de datos. Un primer aspecto que revisaremos es la percepción visual, revisaremos ilusiones visuales, así como los conceptos de atención y memoria. Revisaremos dos conceptos muy importantes para conectar con el contenido de las siguientes semanas: marcas y canales, así como un ranking de su efectividad. Finalmente, estudiaremos el concepto de modelos de color y revisaremos algunos modelos en detalle para poder elegirlos de forma más efectiva en el futuro.
Inclus
4 vidéos3 lectures2 devoirs
En esta semana veremos en detalle un modelo conceptual que nos permitirá tomar decisiones sistemáticas y efectivas para hacer visualización de datos: el modelo anidado de Munzner. El modelo de validación y diseño de visualizaciones de Munzner tiene tres grandes componentes asociados a tres preguntas, respectivamente: ¿Qué?, con esta pregunta abordamos aspectos de los datos a visualizar ¿Por qué?, con esta pregunta abordamos el esencial tema de las tareas visuales como pares de acción y objetivo. ¿Cómo?, al responder esta pregunta, y ya habiendo respondido las dos anteriores, nos enfocamos en la visualización misma, la codificación visual. ¡Pon mucha atención a las clases y lecturas esta semana!, serán muy importantes para que puedas continuar tu aprendizaje de visualización de datos.
Inclus
4 vidéos3 lectures2 devoirs
En esta cuarta semana veremos varios aspectos de síntesis y una primera actividad práctica de visualiación de datos. Revisaremos como usar el modelo de Munzner para analizar y validar visualizaciones de datos existentes. Además, a modo de resumen, veremos varias reglas y consejors generales para visualizar según las sugerencias de E. Tufte. Revisaremos también los distintos tipos de software disponibles para implementar visualizaciones de datos. Como último tema, veremos cómo crear una visualización usando una herramienta gratuita en línea.
Inclus
4 vidéos5 lectures2 devoirs1 plugin
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Universitat Autònoma de Barcelona
University of Colorado Boulder
Microsoft
Universidad de los Andes
Préparer un diplôme
Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par Pontificia Universidad Católica de Chile. Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
13 avis
- 5 stars
76,92 %
- 4 stars
7,69 %
- 3 stars
7,69 %
- 2 stars
0 %
- 1 star
7,69 %
Affichage de 3 sur 13
Révisé le 19 mai 2023
Buen curso de introducción de datos, tocaron temas importantes a utilizar en la visualización de datos
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.