The University of Sydney
Introduction to Advanced Calculus

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
The University of Sydney

Introduction to Advanced Calculus

David Easdown

Instructeur : David Easdown

Enseignant de premier plan

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire
Certaines connaissances prérequises
38 heures pour terminer
3 semaines à 12 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire
Certaines connaissances prérequises
38 heures pour terminer
3 semaines à 12 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

septembre 2024

Évaluations

28 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

This module begins by reviewing limit definitions of the derivative, looking in depth at underlying results and principles such as the Mean Value Theorem and the Intermediate Value Theorem, leading to methods for finding approximate solutions of equations. New techniques are introduced, such as L'Hopital's Rule for finding difficult limits and the lightning fast Newton's Method for homing in on roots of equations. The module finishes by adding hyperbolic functions to the toolkit, complementing existing knowledge of circular functions.

Inclus

13 vidéos8 lectures7 devoirs

This module begins by reviewing areas under curves, the method of Riemann sums, leading to definite integrals, and the Fundamental Theorem of Calculus, leading to indefinite integrals. It then reviews integration by substitution, including difficult examples, and revisits logarithms and exponentials and their properties, using the constructive late transcendental method (compared with the existential early transcendental method). The module then introduces the method of integration by parts and the method of partial fractions, including a sketch of underlying related principles from linear algebra. The module then introduces the disc and shell methods for finding volumes of revolution, formulae for finding surface areas of revolutions, related to arc length, and the concept of work from physics. The module finishes with an introduction to improper integrals, their many variations and contrasting techniques, including a discussion of the painter's paradox, involving Torricelli's trumpet, which has a finite volume but infinite surface area.

Inclus

17 vidéos10 lectures9 devoirs

This third module begins by reviewing concepts related to sequences, including the Monotone Convergence Theorem, which is used frequently to guarantee convergence of limits and series under certain conditions. The module then introduces series, which are sums of sequences, which go on forever, and defined formally as limits of partial sums, which may or may not converge. Geometric, harmonic and alternating harmonic series are introduced, leading to the Ratio Test and the Alternating Test for convergence. Power series representations are introduced, including explicit formulae for Taylor and Maclaurin series, in terms of iterated derivatives and factorials. Important functions, such as exponential, logarithmic, circular and hyperbolic functions, are analysed, compared and contrasted, from the point of view of series representations. Approximations of functions are studied using Taylor and Maclaurin polynomials, which result by truncating the respective infinite series. This leads to Taylor's Theorem, which enables one to control the quality of the approximation and make predictions using a remainder term. The method is also used to prove Euler's number e is irrational and that the alternating harmonic series converges to the natural logarithm of 2.

Inclus

11 vidéos5 lectures6 devoirs

This fourth and final module serves as an introduction to the vast theory of differential equations. It begins with the class of separable equations, generalising the simplest cases where the derivative of a function is proportional to the value of the function, used to model exponential growth and decay. Introducing an inhibition or death factor, leads to the logistic equation and its solution, the logistic function, used to model wide ranging phenomena in science and population dynamics. A discussion of equilibrium solutions and their stability ensues. The module then considers a class of first order linear differential equations, which may be solved using an integrating factor method, an instance of the Conjugation Principle, used widely in mathematics to solve difficult problems or avoid obstacles. The module then considers second order equations with constant coefficients, which have solution spaces that are two-dimensional, analogous to planes in space. The module finishes with an introduction to solutions of systems of equations, which model interacting populations, in a symbiotic or predator-prey relationship, including a brief overview of connections with concepts in linear algebra and the matrix exponential.

Inclus

11 vidéos6 lectures6 devoirs

Instructeur

David Easdown

Enseignant de premier plan

The University of Sydney
3 Cours256 429 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Math and Logic

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions