University of Michigan
Introduction to Machine Learning in Sports Analytics

Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

University of Michigan

Introduction to Machine Learning in Sports Analytics

Christopher Brooks

Instructeur : Christopher Brooks

4 146 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.7

(22 avis)

niveau Intermédiaire

Expérience recommandée

12 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
4.7

(22 avis)

niveau Intermédiaire

Expérience recommandée

12 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Gain an understanding of how classification and regression techniques can be used to enable sports analytics across athletic activities and events.

Compétences que vous acquerrez

  • Catégorie : Data Analysis
  • Catégorie : Python Programming
  • Catégorie : sports analytics

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

4 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Sports Performance Analytics
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 4 modules dans ce cours

This week will introduce the concept of machine learning and describe the four major areas of places it can be used in sports analytics. The machine learning pipeline will be discussed, as well as some common issues one runs into when using machine learning for sports analytics.

Inclus

7 vidéos3 lectures1 devoir1 laboratoire non noté

In this week students will learn how Support Vector Machines (SVM) work, and will experience these models when looking at both baseball and wearable data. Coming out of the week students will have experience building SVMs with real data and will be able to apply them to problems of their own.

Inclus

4 vidéos2 lectures1 devoir

This week will focus on interpretable methods for machine learning with a particular focus on decision trees. Students will learn how these models work in general, and see special uses of decision trees in combination with regression methods. In this week students will come to better understand how the python sklearn toolkit can be used for a breadth of supervised learning tasks.

Inclus

4 vidéos2 lectures1 devoir

In this week of the course students will learn how many different models can be used together through ensembles, including the random forest method as a common use, as well as more general methods available in sklearn such as stacking and bagging. By the end of this week students will have a broad understanding of how methods such as SVMs, decision trees, and logistic regression can be used together to solve a problem with increasing performance.

Inclus

5 vidéos3 lectures1 devoir

Instructeur

Christopher Brooks
15 Cours890 845 apprenants

Offert par

Recommandé si vous êtes intéressé(e) par Data Analysis

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’

Avis des étudiants

Affichage de 3 sur 22

4.7

22 avis

  • 5 stars

    81,81 %

  • 4 stars

    13,63 %

  • 3 stars

    0 %

  • 2 stars

    4,54 %

  • 1 star

    0 %

KL
5

Révisé le 30 oct. 2024

NM
5

Révisé le 4 déc. 2022

WV
5

Révisé le 11 avr. 2024

Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions