The course extends the fundamental tools in "Machine Learning Foundations" to powerful and practical models by three directions, which includes embedding numerous features, combining predictive features, and distilling hidden features. [這門課將先前「機器學習基石」課程中所學的基礎工具往三個方向延伸為強大而實用的工具。這三個方向包括嵌入大量的特徵、融合預測性的特徵、與萃取潛藏的特徵。]
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
(34 avis)
Détails à connaître
Ajouter à votre profil LinkedIn
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 16 modules dans ce cours
more robust linear classification solvable with quadratic programming
Inclus
5 vidéos4 lectures
another QP form of SVM with valuable geometric messages and almost no dependence on the dimension of transformation
Inclus
4 vidéos
kernel as a shortcut to (transform + inner product): allowing a spectrum of models ranging from simple linear ones to infinite dimensional ones with margin control
Inclus
4 vidéos
a new primal formulation that allows some penalized margin violations, which is equivalent to a dual formulation with upper-bounded variables
Inclus
4 vidéos1 devoir
soft-classification by an SVM-like sparse model using two-level learning, or by a "kernelized" logistic regression model using representer theorem
Inclus
4 vidéos
kernel ridge regression via ridge regression + representer theorem, or support vector regression via regularized tube error + Lagrange dual
Inclus
4 vidéos
blending known diverse hypotheses uniformly, linearly, or even non-linearly; obtaining diverse hypotheses from bootstrapped data
Inclus
4 vidéos
"optimal" re-weighting for diverse hypotheses and adaptive linear aggregation to boost weak algorithms
Inclus
4 vidéos1 devoir
recursive branching (purification) for conditional aggregation of simple hypotheses
Inclus
4 vidéos
bootstrap aggregation of randomized decision trees with automatic validation
Inclus
4 vidéos
aggregating trees from functional + steepest gradient descent subject to any error measure
Inclus
4 vidéos
automatic feature extraction from layers of neurons with the back-propagation technique for stochastic gradient descent
Inclus
4 vidéos1 devoir
an early and simple deep learning model that pre-trains with denoising autoencoder and fine-tunes with back-propagation
Inclus
4 vidéos
linear aggregation of distance-based similarities to prototypes found by clustering
Inclus
4 vidéos
linear models of items on extracted user features (or vice versa) jointly optimized with stochastic gradient descent for recommender systems
Inclus
4 vidéos
summary from the angles of feature exploitation, error optimization, and overfitting elimination towards practical use cases of machine learning
Inclus
4 vidéos1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Alberta Machine Intelligence Institute
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.