The objective of this course is to introduce Markov Chain Monte Carlo Methods for Bayesian modeling and inference, The attendees will start off by learning the the basics of Monte Carlo methods. This will be augmented by hands-on examples in Python that will be used to illustrate how these algorithms work. This will be the second course in a specialization of three courses .Python and Jupyter notebooks will be used throughout this course to illustrate and perform Bayesian modeling with PyMC3. The course website is located at https://sjster.github.io/introduction_to_computational_statistics/docs/index.html. The course notebooks can be downloaded from this website by following the instructions on page https://sjster.github.io/introduction_to_computational_statistics/docs/getting_started.html.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Bayesian Inference with MCMC
Ce cours fait partie de Spécialisation Introduction to Computational Statistics for Data Scientists
Instructeur : Dr. Srijith Rajamohan
2 282 déjà inscrits
Inclus avec
(20 avis)
Expérience recommandée
Ce que vous apprendrez
1. Markov Chain Monte Carlo algorithms
2. Implementing the above in Python
3. Assess the performance of Bayesian models
Compétences que vous acquerrez
- Catégorie : Bayesian
- Catégorie : Scipy
- Catégorie : Scikit-Learn
- Catégorie : MCMC
Détails à connaître
Ajouter à votre profil LinkedIn
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 3 modules dans ce cours
This module gives an overview of topics related to assessing the quality of models. While some of these metrics may be familiar to those with a Machine Learning background, the goal is to bring awareness to the concepts rooted in Information Theory. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/BayesianInference.html. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html
Inclus
13 vidéos5 lectures1 devoir
This module serves as a gentle introduction to Markov-Chain Monte Carlo methods. The general idea behind Markov chains are presented along with their role in sampling from distributions. The Metropolis and Metropolis-Hastings algorithms are introduced and implemented in Python to help illustrate their details. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/MonteCarlo.html. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html
Inclus
8 vidéos1 lecture1 devoir2 plugins
This module is a continuation of module 2 and introduces Gibbs sampling and the Hamiltonian Monte Carlo (HMC) algorithms for inferring distributions. The Gibbs sampler algorithm is illustrated in detail, while the HMC receives a more high-level treatment due to the complexity of the algorithm. Finally, some of the properties of MCMC algorithms are presented to set the stage for Course 3 which uses the popular probabilistic framework PyMC3. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/MonteCarlo.html#gibbs-sampling. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html
Inclus
7 vidéos2 lectures1 devoir1 plugin
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Databricks
Duke University
University of California, Santa Cruz
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.