Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.

Databricks

Bayesian Inference with MCMC

Dr. Srijith Rajamohan

Instructeur : Dr. Srijith Rajamohan

2 282 déjà inscrits

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
3.3

(20 avis)

niveau Débutant

Expérience recommandée

14 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
3.3

(20 avis)

niveau Débutant

Expérience recommandée

14 heures pour terminer
3 semaines à 4 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • 1. Markov Chain Monte Carlo algorithms

    2. Implementing the above in Python

    3. Assess the performance of Bayesian models

Compétences que vous acquerrez

  • Catégorie : Bayesian
  • Catégorie : Scipy
  • Catégorie : Scikit-Learn
  • Catégorie : MCMC

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Évaluations

3 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Introduction to Computational Statistics for Data Scientists
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 3 modules dans ce cours

This module gives an overview of topics related to assessing the quality of models. While some of these metrics may be familiar to those with a Machine Learning background, the goal is to bring awareness to the concepts rooted in Information Theory. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/BayesianInference.html. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html

Inclus

13 vidéos5 lectures1 devoir

This module serves as a gentle introduction to Markov-Chain Monte Carlo methods. The general idea behind Markov chains are presented along with their role in sampling from distributions. The Metropolis and Metropolis-Hastings algorithms are introduced and implemented in Python to help illustrate their details. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/MonteCarlo.html. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html

Inclus

8 vidéos1 lecture1 devoir2 plugins

This module is a continuation of module 2 and introduces Gibbs sampling and the Hamiltonian Monte Carlo (HMC) algorithms for inferring distributions. The Gibbs sampler algorithm is illustrated in detail, while the HMC receives a more high-level treatment due to the complexity of the algorithm. Finally, some of the properties of MCMC algorithms are presented to set the stage for Course 3 which uses the popular probabilistic framework PyMC3. The course website is https://sjster.github.io/introduction_to_computational_statistics/docs/Production/MonteCarlo.html#gibbs-sampling. Instructions to download and run the notebooks are at https://sjster.github.io/introduction_to_computational_statistics/docs/Production/getting_started.html

Inclus

7 vidéos2 lectures1 devoir1 plugin

Instructeur

Évaluations de l’enseignant
1.7 (7 évaluations)
Dr. Srijith Rajamohan
Databricks
3 Cours7 292 apprenants

Offert par

Databricks

Recommandé si vous êtes intéressé(e) par Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions