In this course, we will build on our knowledge of basic models and explore advanced AI techniques. We’ll start with a deep dive into neural networks, building our knowledge from the ground up by examining the structure and properties. Then we’ll code some simple neural network models and learn to avoid overfitting, regularization, and other hyper-parameter tricks. After a project predicting likelihood of heart disease given health characteristics, we’ll move to random forests. We’ll describe the differences between the two techniques and explore their differing origins in detail. Finally, we’ll complete a project predicting similarity between health patients using random forests.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Neural Networks and Random Forests
Ce cours fait partie de Spécialisation AI for Scientific Research
Instructeurs : Rajvir Dua
1 508 déjà inscrits
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Random Forest
- Catégorie : Artificial Neural Network
- Catégorie : machine learniing
- Catégorie : predictions in science
- Catégorie : identifying specieis
Détails à connaître
Ajouter à votre profil LinkedIn
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
In this module, we'll go through neural networks and how to use them in Python. We'll start by describing what a neural network is and how to construct one by combining a sequence of linear models. Then, we'll talk about converge of neural networks in the hopes of minimizing a loss function. Finally, we'll learn how to code a neural network in Python.
Inclus
5 vidéos3 lectures2 devoirs1 sujet de discussion
In this module, we'll take a more detailed look into neural network and the considerations we should be having when using them. We'll start by adding layers to our 2-layer network, exploring the different options and their effects. Then, we'll explore some more advanced Python libraries for neural networks in TensorFlow and Keras. Finally, we'll discuss the implications to science and how to apply the models in the space.
Inclus
3 vidéos5 lectures1 devoir1 laboratoire non noté
In this module, we'll build up our knowledge of random forests and their uses in science. We'll start by exploring decision trees and how they operate as models in isolation. Next, we'll look at the impact of combining decision trees to create random forests. From here, we'll talk about the similarities and differences between regression and classification with random forests before concluding with a final project predicting species from lineage.
Inclus
2 vidéos2 lectures1 devoir de programmation1 sujet de discussion
In this final project, we'll be comparing a suite of models to find the one that best predicts sepal width.
Inclus
1 devoir de programmation
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Stanford University
Coursera Project Network
Sungkyunkwan University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.