This comprehensive course guides you through the fascinating world of face recognition using Python. Starting with an introduction to face recognition concepts, you'll proceed to set up your environment using Anaconda and address any initial setup challenges. The course then delves into Python basics, ensuring you have the foundational knowledge required for more advanced topics.
Une nouvelle année, de bonnes résolutions et des économies gigantesques : profitez d'un an d'accès illimité aux formations de Coursera Plus, pour $199. Économiser maintenant.
Computer Vision: Face Recognition Quick Starter in Python
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Explain the principles of face detection and face recognition technology.
Install and configure dependencies and libraries such as dlib, OpenCV, and Pillow.
Execute face detection and face recognition tasks using Python.
Compétences que vous acquerrez
- Catégorie : Image Processing
- Catégorie : Computer Vision
- Catégorie : Python (Programming Language)
- Catégorie : OpenCV
- Catégorie : Dlib (C++ Library)
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
9 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 26 modules dans ce cours
In this module, we will introduce the course, providing an overview of the topics to be covered, and discuss the significance of face recognition in various applications. We'll also present the structure and objectives of the course to set clear expectations.
Inclus
2 vidéos1 lecture
In this module, we will set up the development environment by installing the Anaconda package. This will prepare our computer for Python coding, ensuring that we have the necessary tools and libraries for face recognition tasks.
Inclus
1 vidéo
In this module, we will cover essential Python programming basics, including assignments, flow control, data structures, and functions. This foundational knowledge is crucial for understanding and implementing face recognition algorithms.
Inclus
4 vidéos
In this module, we will install the necessary dependencies and libraries required for face recognition. We will also address common issues with DLib and ensure the environment is correctly configured for our projects.
Inclus
3 vidéos
In this module, we will introduce face detectors, discussing their importance and the different techniques used for detecting faces. This knowledge is fundamental for implementing effective face recognition solutions.
Inclus
1 vidéo1 devoir
In this module, we will implement face detection in code using the face_recognition and OpenCV libraries. We will cover practical coding examples and ensure a thorough understanding of face detection implementation.
Inclus
2 vidéos
In this module, we will address the common issue of the cv2.imshow() function not responding while displaying images. We will implement a fix and verify that the display window functions correctly.
Inclus
1 vidéo
In this module, we will detect and locate faces from a real-time webcam video feed. We will cover the steps required to implement and optimize real-time face detection for practical applications.
Inclus
2 vidéos1 devoir
In this module, we will detect and locate faces in pre-recorded video files. We will discuss the implementation details and performance considerations for video-based face detection.
Inclus
1 vidéo
In this module, we will blur detected faces in real-time video to ensure privacy. We will cover the implementation and testing of face blurring techniques in a real-time context.
Inclus
1 vidéo
In this module, we will install the libraries required for real-time facial expression detection. Proper installation and configuration are essential for the subsequent implementation of facial expression detection.
Inclus
1 vidéo1 devoir
In this module, we will detect facial expressions from a real-time webcam video feed. We will implement the necessary algorithms and optimize the detection process for accurate and efficient performance.
Inclus
2 vidéos
In this module, we will delve into the techniques for detecting facial expressions in video footage. We will explore methods to identify and analyze emotions based on facial cues, and implement algorithms that enhance the accuracy of facial expression recognition.
Inclus
1 vidéo
In this module, we will detect facial expressions in static images. We will discuss the implementation and validation of image-based facial expression detection techniques.
Inclus
1 vidéo1 devoir
In this module, we will introduce age and gender detection, discussing their significance and applications. We will provide an overview of the steps involved in implementing real-time age and gender classification.
Inclus
1 vidéo
In this module, we will perform real-time age and gender classification on webcam video feed. We will focus on the implementation, optimization, and validation of the detection algorithms.
Inclus
1 vidéo
In this module, we will classify the age and gender of faces in static images. We will cover the implementation and validation of image-based detection algorithms.
Inclus
1 vidéo1 devoir
In this module, we will introduce face recognition, discussing its applications and underlying principles. We will also address the challenges and solutions involved in face recognition technology.
Inclus
1 vidéo
In this module, we will implement face recognition algorithms to detect and recognize faces in images. We will cover the coding and optimization techniques required for an effective face recognition system.
Inclus
2 vidéos
In this module, we will detect and recognize faces from a real-time webcam video feed. We will focus on implementing and optimizing real-time face recognition algorithms.
Inclus
2 vidéos1 devoir
In this module, we will detect and recognize faces in pre-recorded video files. We will discuss the implementation details and performance evaluation of video-based face recognition.
Inclus
1 vidéo
In this module, we will calculate the distance between faces for advanced analysis. We will cover the implementation and optimization of face distance algorithms.
Inclus
2 vidéos
In this module, we will learn how to visualize and customize face landmarks in images. We will cover the implementation and testing of face landmark visualization techniques.
Inclus
2 vidéos1 devoir
In this module, we will visualize and customize face landmarks for multiple faces in both real-time and pre-saved videos. We will focus on the implementation, optimization, and testing of multi-face landmark visualization techniques.
Inclus
2 vidéos
In this module, we will demonstrate how to customize face landmarks to apply simple makeup. We will cover the implementation and testing of face makeup techniques using face landmarks.
Inclus
1 vidéo
In this module, we will demonstrate face makeup in a real-time video using face landmarks. We will focus on implementing, optimizing, and validating real-time face makeup algorithms.
Inclus
1 vidéo2 devoirs
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Scrimba
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.