In this comprehensive course, you'll dive into the world of real-time object detection with YOLO, one of the most powerful algorithms for detecting objects in images and videos. The course begins with an introduction to YOLO and object detection, followed by setting up your development environment with Anaconda and installing essential libraries like OpenCV. A review of Python basics ensures you are equipped with the necessary programming knowledge before delving into convolutional neural networks (CNNs).
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Computer Vision: YOLO Custom Object Detection with Colab GPU
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Identify the steps required to set up the YOLO environment and Colab GPU.
Explain the process of Non-Maximum Suppression in object detection.
Utilize pre-trained YOLO models to perform object detection on images and videos.
Compare the results of object detection across different datasets using YOLO.
Compétences que vous acquerrez
- Catégorie : Python
- Catégorie : OpenCV
- Catégorie : CNN
- Catégorie : YOLO
- Catégorie : Google Colab
Détails à connaître
Ajouter à votre profil LinkedIn
octobre 2024
10 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 26 modules dans ce cours
In this module, we will introduce the course content and outline the key concepts you'll be learning. This section will provide an overview, helping you understand the course structure and what to expect as you progress.
Inclus
1 vidéo1 lecture
In this module, we will dive into the basics of YOLO, a state-of-the-art object detection algorithm. You'll learn about its scope, importance, and why it's widely used in various computer vision applications.
Inclus
1 vidéo
In this module, we will guide you through installing and setting up Anaconda, a popular platform for managing Python environments. You'll learn how to prepare your system for running the course projects.
Inclus
1 vidéo1 devoir
In this module, we will cover fundamental Python programming concepts, including flow control, data structures, and functions. These basics are crucial for developing and understanding the custom YOLO model later in the course.
Inclus
4 vidéos
In this module, we will walk you through the installation of the OpenCV library, a key tool for image processing and computer vision. You'll ensure your environment is ready for the practical tasks ahead.
Inclus
1 vidéo
In this module, we will introduce Convolutional Neural Networks (CNNs), the backbone of many modern computer vision applications. You'll gain insights into how CNNs function and their relevance to YOLO.
Inclus
1 vidéo1 devoir
In this module, we will guide you through using a pre-trained YOLO model to detect objects in images. You'll learn how to perform this task step-by-step, gaining hands-on experience with the YOLO algorithm.
Inclus
4 vidéos
In this module, we will explore Non-Maximum Suppression (NMS), a technique used to improve object detection accuracy in YOLO. You'll see how NMS helps eliminate redundant detections, refining the final output.
Inclus
2 vidéos
In this module, we will demonstrate how to perform real-time object detection using a webcam and a pre-trained YOLO model. You'll learn to adapt YOLO for live video feeds, enhancing your practical skills.
Inclus
1 vidéo1 devoir
In this module, we will show you how to apply YOLO to detect objects in pre-saved video files. You'll explore the nuances of video-based detection and how to optimize the model for such tasks.
Inclus
1 vidéo
In this module, we will introduce you to the process of custom training a YOLO model. You'll learn about the advantages of customizing YOLO for specific tasks and get an overview of the training process.
Inclus
1 vidéo
In this module, we will focus on setting up the Darknet environment, a key step in custom training YOLOv4 models. You'll download the necessary weights and prepare your system for the training process.
Inclus
2 vidéos1 devoir
In this module, we will guide you through the data collection process for training a YOLOv4 model. You'll learn how to gather and organize data effectively, ensuring your training dataset is robust.
Inclus
2 vidéos
In this module, we will cover the image labeling process, a critical step in preparing your dataset for YOLOv4 training. You'll use labeling tools to create accurate and consistent annotations for your images.
Inclus
2 vidéos
In this module, we will explain the concept of train-test splitting, essential for evaluating the performance of your YOLOv4 model. You'll learn how to balance your data to achieve optimal training results.
Inclus
1 vidéo1 devoir
In this module, we will focus on the final stages of preparing your dataset for YOLOv4 training. You'll apply preprocessing techniques to ensure your data is ready for the training phase.
Inclus
2 vidéos
In this module, we will demonstrate how to sync your data with Google Drive and connect it to Colab. You'll learn how to manage your files efficiently, ensuring smooth operation during model training.
Inclus
2 vidéos
In this module, we will guide you through compiling and testing Darknet, the framework used for YOLOv4 training. You'll learn to resolve any issues that may arise during the setup process.
Inclus
3 vidéos1 devoir
In this module, we will explore how to monitor and analyze the training progress of your YOLOv4 model. You'll use charts and metrics to assess performance and make necessary adjustments.
Inclus
1 vidéo
In this module, we will cover the final steps of YOLOv4 training, including downloading and saving the model weights. You'll learn how to complete the training process and prepare your model for deployment.
Inclus
1 vidéo
In this module, we will discuss the GPU usage limits in Google Colab and how they may affect your YOLOv4 training. You'll learn strategies to manage these limits and keep your training process uninterrupted.
Inclus
1 vidéo1 devoir
In this module, we will guide you through upgrading OpenCV to ensure compatibility with YOLOv4. You'll learn how to perform the upgrade and resolve any issues that may arise.
Inclus
1 vidéo
In this module, we will demonstrate how to use a pre-trained YOLOv4 model to detect objects in both images and videos. You'll explore the model's versatility and practical uses in various scenarios.
Inclus
1 vidéo1 devoir
In this module, we will show you how to train a YOLOv4 model to detect coronavirus in images. You'll learn the nuances of customizing YOLOv4 for specialized detection tasks.
Inclus
1 vidéo
In this module, we will focus on applying a custom-trained YOLOv4 model to detect coronavirus in videos. You'll gain experience in adapting image-based models for video analysis.
Inclus
1 vidéo1 devoir
In this module, we will present additional real-world case studies demonstrating the application of YOLO in different industries. You'll see how the concepts learned can be applied to solve real-world challenges.
Inclus
1 vidéo1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
MathWorks
Edge Impulse
DeepLearning.AI
Coursera Project Network
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.