Packt
Deep Learning with Keras and Practical Applications

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Packt

Deep Learning with Keras and Practical Applications

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

9 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

9 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Identify the key features and functions of the Keras deep learning library

  • Explain the process and importance of exploratory data analysis (EDA) and data visualization

  • Distinguish between different types of Convolutional Neural Networks (CNNs) and their applications in image classification

  • Develop and deploy optimized deep learning models using cloud-based resources

Compétences que vous acquerrez

  • Catégorie : Keras (Neural Network Library)
  • Catégorie : Deep Learning
  • Catégorie : Convolutional Neural Networks
  • Catégorie : Machine Learning
  • Catégorie : Image Augmentation

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

septembre 2024

Évaluations

12 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé

Élaborez votre expertise du sujet

Ce cours fait partie de la Spécialisation Keras Deep Learning & Generative Adversarial Networks (GAN)
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à cette Spécialisation.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable
Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 33 modules dans ce cours

In this module, we will introduce you to the concept of multiclass classification for red wine quality assessment. You will gain insights into the project's goals, the methodologies employed, and an overview of the steps we will follow throughout this engaging machine learning journey.

Inclus

1 vidéo2 lectures

In this module, we will guide you through the crucial first step of fetching and loading data. You will learn how to acquire and prepare your dataset, setting a solid foundation for the machine learning process ahead.

Inclus

1 vidéo

In this module, we will dive into Exploratory Data Analysis (EDA) and data visualization. By leveraging visual tools and techniques, you will gain a deeper understanding of your dataset, uncovering crucial insights before proceeding to model creation.

Inclus

1 vidéo1 devoir

In this module, we will define the model's architecture. You will witness the construction of layers, activation functions, and connections, understanding how each component contributes to the overall machine learning journey.

Inclus

1 vidéo

In this module, we will guide you through the compilation, fitting, and plotting of the model. You will learn how to optimize model training and visualize performance metrics, ensuring a well-tuned classification model.

Inclus

1 vidéo

In this module, we will demonstrate how to use the trained model for predicting wine quality. You will see the model in action, applying it to real-world data and analyzing the results to understand its predictive power.

Inclus

1 vidéo1 devoir

In this module, you will learn how to serialize and save your trained model. This essential process will ensure that your model's weights, architecture, and configuration are preserved for future use and deployment.

Inclus

1 vidéo

In this module, we will cover the basics of digital images. You will gain a solid grasp of pixel representation, color channels, resolution, and image formats, forming the foundation for more advanced image processing tasks.

Inclus

1 vidéo

In this module, we will introduce basic image processing using Keras functions. You will learn how to manipulate images, convert between formats, and handle color channels using Keras preprocessing utilities.

Inclus

3 vidéos1 devoir

In this module, we will delve into image augmentation using Keras. You will learn how to enhance single images using the ImageDataGenerator class, a crucial step in improving model generalization and accuracy.

Inclus

2 vidéos

In this module, we will explore directory-based image augmentation with Keras. You will learn how to enhance your entire image dataset, a vital skill for improving model generalization and accuracy.

Inclus

1 vidéo

In this module, we will delve into data frame augmentation using Keras. You will discover how to amplify your dataset's diversity using advanced augmentation techniques, improving your model's training and performance.

Inclus

1 vidéo1 devoir

In this module, we will demystify the basics of Convolutional Neural Networks (CNNs). You will explore their architecture, layers, and the fundamental principles that power image recognition and classification.

Inclus

1 vidéo

In this module, we will unravel the core concepts of stride, padding, and flattening in CNNs. You will understand how these elements shape convolutions and feature extraction, enhancing your deep learning models.

Inclus

1 vidéo

In this module, we will dive into building a CNN model for flower image classification. You will learn how to fetch, load, and meticulously prepare your data, ensuring robust model training and accuracy.

Inclus

1 vidéo1 devoir

In this module, we will address the fundamental step of creating dedicated test and train folders for flower classification using CNNs. You will learn how to organize your dataset meticulously, enhancing the training and testing process.

Inclus

1 vidéo

In this module, we will define the CNN model for flower classification. You will learn how to design a baseline model using the Sequential class, building the architecture layer by layer for effective image classification.

Inclus

3 vidéos

In this module, we will delve into the training and visualization of the CNN model for flower classification. You will learn the intricate steps that transform data into predictions, enhancing your understanding of model training.

Inclus

1 vidéo1 devoir

In this module, you will learn how to save your trained CNN model for future use in flower classification tasks. Master the essential skill of model persistence and serialization, ensuring seamless deployment whenever needed.

Inclus

1 vidéo

In this module, we will dive into loading a pre-trained CNN model for flower classification. You will learn how to harness the power of saved models to make precise predictions, elevating your understanding of model deployment.

Inclus

1 vidéo

In this module, we will lay the foundation for optimization techniques in flower classification using CNNs. You will understand the importance of optimization and learn about various methods to enhance your model's performance.

Inclus

1 vidéo1 devoir

In this module, we will delve into the world of dropout regularization in flower classification using CNNs. You will learn how to implement dropout to prevent overfitting and enhance your model's performance and generalization.

Inclus

1 vidéo

In this module, we will explore padding and filter optimization techniques in flower classification using CNNs. You will learn how to optimize these elements to improve model accuracy and performance.

Inclus

1 vidéo

In this module, we will delve into the optimization of data augmentation techniques in flower classification using CNNs. You will learn how to enhance your model's performance by implementing effective augmentation strategies.

Inclus

1 vidéo1 devoir

In this module, we will embark on the journey of hyperparameter tuning for your CNN model. You will learn how to manually adjust parameters and implement strategies to enhance model performance and accuracy.

Inclus

2 vidéos

In this module, we will introduce you to transfer learning using pre-trained models, focusing on the VGG architecture. You will understand the benefits and applications of transfer learning in enhancing your flower classification tasks.

Inclus

1 vidéo

In this module, we will explore predictions using the pre-trained VGG16 and VGG19 models. You will learn how to use these state-of-the-art models to achieve reliable predictions and interpret the results for flower classification.

Inclus

2 vidéos1 devoir

In this module, we will dive into the world of AI prediction using the ResNet50 model. You will learn how to apply ResNet50 to achieve reliable predictions and evaluate its performance in flower classification tasks.

Inclus

1 vidéo

In this module, we will focus on transfer learning using the VGG16 model for training on a flower dataset. You will learn how to harness the power of pre-trained models to enhance your flower classification tasks.

Inclus

2 vidéos

In this module, we will delve into transfer learning with the VGG16 model, focusing on flower prediction. You will learn how to apply transfer learning to make precise predictions and evaluate its effectiveness in improving model performance.

Inclus

1 vidéo1 devoir

In this module, we will guide you through utilizing transfer learning with the VGG16 model on Google Colab's GPU. You will learn the essential procedures for preparing and uploading your dataset, harnessing the power of pre-trained models for efficient image classification tasks.

Inclus

1 vidéo

In this module, we will guide you through transfer learning using the VGG16 model on Google Colab's GPU. You will learn how to train the model and make predictions, leveraging the power of pre-trained models for your image classification tasks.

Inclus

1 vidéo

In this module, we will walk you through utilizing transfer learning with the VGG19 model on Google Colab's GPU. You will learn the step-by-step procedure for leveraging pre-trained models to tackle image classification tasks, ensuring enhanced model performance and accuracy.

Inclus

1 vidéo1 lecture2 devoirs

Instructeur

Packt - Course Instructors
Packt
375 Cours25 243 apprenants

Offert par

Packt

Recommandé si vous êtes intéressé(e) par Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions