In this course, you'll explore the vast potential of machine learning with Amazon AWS SageMaker Canvas, a no-code platform. You'll begin with an introduction to the fundamentals of machine learning, AWS, and the core features of SageMaker. By walking through the SageMaker Canvas interface, you'll learn how to set up a SageMaker domain, manage users, and prepare your data for machine learning projects. This essential groundwork ensures you’re ready to dive into the hands-on elements of the course.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
No-Code Machine Learning Using Amazon AWS SageMaker Canvas
Instructeur : Packt - Course Instructors
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Understand machine learning basics and AWS SageMaker Canvas, including data setup and environment prep.
Apply ML techniques to build, train, and test models on real-world datasets in a no-code platform.
Analyze and interpret model predictions to validate accuracy and improve performance.
Create no-code machine learning solutions to solve business problems using AWS SageMaker Canvas.
Compétences que vous acquerrez
- Catégorie : No-Code ML
- Catégorie : Predictive Modeling
- Catégorie : SageMaker Canvas
- Catégorie : AI Model Building
- Catégorie : AWS SageMaker
Détails à connaître
Ajouter à votre profil LinkedIn
octobre 2024
5 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 12 modules dans ce cours
In this module, we will introduce the basics of machine learning, covering fundamental concepts and applications. You will gain an understanding of what machine learning is and how it works, setting the foundation for the rest of the course.
Inclus
2 vidéos1 lecture
In this module, we will explore Amazon Web Services (AWS), the platform that powers SageMaker Canvas. You’ll learn what AWS is, its key services, and how to sign in to the AWS console for cloud-based machine learning activities.
Inclus
2 vidéos
In this module, we will dive into Amazon SageMaker, a powerful tool for building and training machine learning models. You’ll also get introduced to SageMaker Canvas, the no-code interface that enables you to create models without needing programming skills.
Inclus
2 vidéos
In this module, we will walk through setting up your SageMaker domain and user environment. Additionally, you'll learn how to configure data in S3 Buckets, ensuring everything is ready for building machine learning models in SageMaker.
Inclus
2 vidéos1 devoir
In this module, we will explore the SageMaker Canvas interface, guiding you through its various features and functionalities. This walkthrough will help you efficiently navigate and use SageMaker Canvas for machine learning tasks.
Inclus
1 vidéo
In this module, we will apply what we've learned to build a model for banknote authentication. You'll gather training data, build a predictive model, and validate its performance through batch prediction and accuracy testing.
Inclus
4 vidéos
In this module, we will focus on detecting spam SMS messages using machine learning. You’ll learn how to prepare your data, build a model, and evaluate its predictions to ensure it accurately detects spam.
Inclus
3 vidéos1 devoir
In this module, we will predict customer churn using machine learning. You'll import relevant customer data, build a predictive model, and assess its ability to forecast churn rates accurately.
Inclus
3 vidéos
In this module, we will create a model to predict wine quality. You will work with datasets, build a model, and test its performance, learning how to combine multiple data sources for better results.
Inclus
3 vidéos1 devoir
In this module, you will complete an assignment where you predict white wine quality. This hands-on exercise will reinforce your learning and improve your ability to apply machine learning techniques using SageMaker Canvas.
Inclus
1 vidéo
In this module, we will cover the versioning feature in SageMaker Canvas. You'll learn how to manage different versions of your models, ensuring you can track changes and improvements over time.
Inclus
1 vidéo1 devoir
In this module, we will conclude the course with tips on obtaining more datasets, getting help with SageMaker Canvas, and congratulating you on completing the course. You'll also receive guidance on your next steps in mastering no-code machine learning.
Inclus
3 vidéos1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.