Packt
Regression Analysis for Statistics & Machine Learning in R

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Packt

Regression Analysis for Statistics & Machine Learning in R

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

10 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

10 heures pour terminer
3 semaines à 3 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • Understand the principles of Ordinary Least Square (OLS) regression and its application in R.

  • Analyze and evaluate statistical and ML-based regression models to address issues like multicollinearity.

  • Apply techniques for variable selection and evaluate model accuracy using cross-validation methods.

  • Create and interpret Generalized Linear Models (GLMs), utilizing logistic regression as a binary classifier.

Compétences que vous acquerrez

  • Catégorie : Statistics
  • Catégorie : R
  • Catégorie : Regression Analysis
  • Catégorie : Generalized Linear Models
  • Catégorie : Regression analysis
  • Catégorie : Machine Learning

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

août 2024

Évaluations

8 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Emplacement réservé
Emplacement réservé

Obtenez un certificat professionnel

Ajoutez cette qualification à votre profil LinkedIn ou à votre CV

Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Emplacement réservé

Il y a 7 modules dans ce cours

In this module, we will introduce you to the essential concepts and tools for regression analysis in R. You'll learn the differences between statistical analysis and machine learning, get familiar with R and R Studio, and start working with data. We'll guide you through the steps of data cleaning and perform some initial exploratory data analysis to set a solid foundation for your future learning.

Inclus

8 vidéos1 lecture1 devoir

In this module, we will delve into Ordinary Least Squares (OLS) regression, covering both theory and practical implementation in R. You will learn how to interpret OLS results, calculate and apply confidence intervals, and explore various OLS regression techniques, including models without intercepts, ANOVA, and multiple linear regression with interaction and dummy variables. Additionally, we will discuss the essential conditions that OLS models must satisfy to ensure accurate and reliable results.

Inclus

12 vidéos1 devoir

In this module, we will address the challenge of multicollinearity in OLS regression models. You will learn how to detect multicollinearity and manage regression analyses with correlated predictors. The module covers advanced regression techniques such as Principal Component Regression, Partial Least Square Regression, Ridge Regression, and LASSO Regression, providing you with a comprehensive toolkit to handle multicollinearity effectively in R.

Inclus

7 vidéos1 devoir

In this module, we will explore the critical aspects of variable and model selection in regression analysis. You will understand why selection is essential, learn how to choose the most appropriate OLS regression model, and identify model subsets. We'll cover evaluating regression model accuracy from a machine learning perspective and assessing performance using diverse metrics. Additionally, you will implement LASSO Regression for variable selection and analyze the contribution of predictors in explaining the variation in the outcome variable.

Inclus

8 vidéos1 devoir

In this module, we will tackle common violations of OLS regression model assumptions. You will learn how to apply data transformations to correct issues, use robust regression methods to manage outliers, and address heteroscedasticity to ensure the reliability and validity of your regression models. This module equips you with essential techniques to refine your analysis and improve model performance.

Inclus

4 vidéos1 devoir

In this module, we will introduce you to Generalized Linear Models (GLMs) and their various applications. You will learn the fundamentals of GLMs, including logistic regression for binary response variables, multinomial logistic regression, and regression techniques for count data. Additionally, we will cover methods to evaluate the goodness of fit for these models. This module will enhance your understanding of how GLMs extend traditional linear regression models to handle a wider range of data types and distributions.

Inclus

7 vidéos1 devoir

In this module, we will explore advanced methods for working with non-parametric and non-linear data. You will learn to implement polynomial and non-linear regression techniques, use Generalized Additive Models (GAMs) and their boosted versions, and develop Multivariate Adaptive Regression Splines (MARS) models. We will also cover CART regression trees, Conditional Inference Trees, Random Forests, and Gradient Boosting Regression. Additionally, you will gain insights into selecting suitable machine learning models for complex data scenarios, enhancing your ability to handle diverse data structures in R.

Inclus

10 vidéos2 devoirs

Instructeur

Packt - Course Instructors
Packt
372 Cours9 744 apprenants

Offert par

Packt

Recommandé si vous êtes intéressé(e) par Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Emplacement réservé

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions