Throughout Predicting Extreme Climate Behavior with Machine Learning, you'll explore both theoretical concepts and practical applications or machine learning and data analysis. You'll begin by analyzing unsupervised learning algorithms, mastering techniques like clustering and dimensionality reduction, and applying them to real-world climate datasets. You'll also explore supervised learning, gaining hands-on experience with algorithms such as Logistic Regression, Decision Trees, and Neural Networks.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Predicting Extreme Climate Behavior with Machine Learning
Ce cours fait partie de Spécialisation Modeling and Predicting Climate Anomalies
Instructeur : Osita Onyejekwe
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Analyze and differentiate between various machine learning algorithms, including unsupervised and supervised methods
Apply dimensionality reduction techniques, such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD), to complex datasets
Implement supervised learning algorithms using Python, and evaluate their performance through practical exercises and real-world case studies.
Develop and apply effective clustering methods to analyze and segment data
Compétences que vous acquerrez
- Catégorie : Unsupervised Learning
- Catégorie : Climate Modeling
- Catégorie : Supervised Learning
- Catégorie : Statistical Analysis
- Catégorie : Machine Learning
Détails à connaître
Ajouter à votre profil LinkedIn
août 2024
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 5 modules dans ce cours
Data can be viewed in higher and lower dimensions, and this module will help you explore this key aspect of data science. PCA/SVD are two key methods of unsupervised machine learning in terms of dimensional reduction
Inclus
6 vidéos3 lectures1 devoir1 devoir de programmation1 sujet de discussion1 laboratoire non noté
In this module, we delve into the concept of clustering, a fundamental technique in data analysis and machine learning. Clustering involves grouping a set of objects in such a way that objects in the same group (or cluster) are more similar to each other than to those in other groups. This module will provide a comprehensive exploration of clustering, including its various derivations, such as hierarchical clustering and K-Means.
Inclus
3 vidéos4 lectures1 devoir1 devoir de programmation1 laboratoire non noté
Regression is a cornerstone technique in machine learning, particularly when working with continuous variables, and is essential for modeling relationships between variables and predicting outcomes. In this module, we will explore the fundamental principles of regression, focusing on linear regression.
Inclus
2 vidéos2 lectures1 devoir1 devoir de programmation2 laboratoires non notés
In this module, we will explore classification techniques, a critical aspect of supervised learning in machine learning. Classification is the process of assigning labels to input data based on its features, and it is widely used for tasks like spam detection, medical diagnosis, and image recognition. Throughout this module, we will explore several key classification methods, including Logistic Regression, Decision Trees, Random Forest, and Support Vector Machines (SVM). Each of these techniques offers unique strengths and is suited to different types of data and problem contexts. By the end of this module, you will have a thorough understanding of how these classification algorithms work, how to implement them, and how to choose the right method for your specific supervised learning challenges.
Inclus
9 vidéos3 lectures3 devoirs de programmation2 laboratoires non notés
This final module dives into Neural Networks and its application to climate data, primarily with different activation functions, layers, neurons and architectural structures of the network.
Inclus
3 vidéos4 lectures1 devoir1 sujet de discussion1 laboratoire non noté
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
University of Colorado Boulder
LearnQuest
University of Colorado Boulder
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.