Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
Probabilistic Graphical Models 1: Representation
Ce cours fait partie de Spécialisation Probabilistic Graphical Models
Instructeur : Daphne Koller
91 283 déjà inscrits
(1,433 avis)
Compétences que vous acquerrez
- Catégorie : Bayesian Network
- Catégorie : Graphical Model
- Catégorie : Markov Random Field
Détails à connaître
Ajouter à votre profil LinkedIn
12 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 7 modules dans ce cours
This module provides an overall introduction to probabilistic graphical models, and defines a few of the key concepts that will be used later in the course.
Inclus
4 vidéos1 devoir
In this module, we define the Bayesian network representation and its semantics. We also analyze the relationship between the graph structure and the independence properties of a distribution represented over that graph. Finally, we give some practical tips on how to model a real-world situation as a Bayesian network.
Inclus
15 vidéos6 lectures3 devoirs1 devoir de programmation
In many cases, we need to model distributions that have a recurring structure. In this module, we describe representations for two such situations. One is temporal scenarios, where we want to model a probabilistic structure that holds constant over time; here, we use Hidden Markov Models, or, more generally, Dynamic Bayesian Networks. The other is aimed at scenarios that involve multiple similar entities, each of whose properties is governed by a similar model; here, we use Plate Models.
Inclus
4 vidéos1 devoir
A table-based representation of a CPD in a Bayesian network has a size that grows exponentially in the number of parents. There are a variety of other form of CPD that exploit some type of structure in the dependency model to allow for a much more compact representation. Here we describe a number of the ones most commonly used in practice.
Inclus
4 vidéos2 devoirs1 devoir de programmation
In this module, we describe Markov networks (also called Markov random fields): probabilistic graphical models based on an undirected graph representation. We discuss the representation of these models and their semantics. We also analyze the independence properties of distributions encoded by these graphs, and their relationship to the graph structure. We compare these independencies to those encoded by a Bayesian network, giving us some insight on which type of model is more suitable for which scenarios.
Inclus
7 vidéos2 devoirs1 devoir de programmation
In this module, we discuss the task of decision making under uncertainty. We describe the framework of decision theory, including some aspects of utility functions. We then talk about how decision making scenarios can be encoded as a graphical model called an Influence Diagram, and how such models provide insight both into decision making and the value of information gathering.
Inclus
3 vidéos2 devoirs1 devoir de programmation
This module provides an overview of graphical model representations and some of the real-world considerations when modeling a scenario as a graphical model. It also includes the course final exam.
Inclus
1 vidéo1 devoir
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Machine Learning
École Polytechnique Fédérale de Lausanne
Duke University
Databricks
Coursera Project Network
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 1433
1 433 avis
- 5 stars
74,52 %
- 4 stars
17,86 %
- 3 stars
5,23 %
- 2 stars
1,04 %
- 1 star
1,32 %
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Apply the basic process of representing a scenario as a Bayesian network or a Markov network
Analyze the independence properties implied by a PGM, and determine whether they are a good match for your distribution
Decide which family of PGMs is more appropriate for your task
Utilize extra structure in the local distribution for a Bayesian network to allow for a more compact representation, including tree-structured CPDs, logistic CPDs, and linear Gaussian CPDs
Represent a Markov network in terms of features, via a log-linear model
Encode temporal models as a Hidden Markov Model (HMM) or as a Dynamic Bayesian Network (DBN)
Encode domains with repeating structure via a plate model
Represent a decision making problem as an influence diagram, and be able to use that model to compute optimal decision strategies and information gathering strategies
Honors track learners will be able to apply these ideas for complex, real-world problems
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.