SAS Viya is an in-memory distributed environment used to analyze big data quickly and efficiently. In this course, you’ll learn how to use the SAS Viya APIs to take control of SAS Cloud Analytic Services from a Jupyter Notebook using R or Python. You’ll learn to upload data into the cloud, analyze data, and create predictive models with SAS Viya using familiar open source functionality via the SWAT package -- the SAS Scripting Wrapper for Analytics Transfer. You’ll learn how to create both machine learning and deep learning models to tackle a variety of data sets and complex problems. And once SAS Viya has done the heavy lifting, you’ll be able to download data to the client and use native open source syntax to compare results and create graphics.
Using SAS Viya REST APIs with Python and R
Instructeurs : Jordan Bakerman
3 776 déjà inscrits
Inclus avec
(15 avis)
Détails à connaître
Ajouter à votre profil LinkedIn
23 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 8 modules dans ce cours
In this module, you meet the instructor and learn about course logistics, such as how to access the software for this course.
Inclus
1 vidéo3 lectures1 élément d'application
In this module you learn about the analytical processing engine behind SAS Viya, the Cloud Analytic Services server. You also learn how to submit data processing commands to SAS Viya from the open source languages R and Python.
Inclus
10 vidéos5 devoirs1 élément d'application
In this module you learn how to use R and Python to create, optimize, and assess SAS Viya predictive models. You also learn how to use R and Python to efficiently manage the creation and assessment of these models.
Inclus
15 vidéos4 devoirs3 éléments d'application
In this module you learn how natural language processing is used to analyze collections of text documents. You also learn how to turn blocks of unstructured text into numeric inputs suitable for predictive modeling.
Inclus
9 vidéos3 devoirs2 éléments d'application
In this module you learn how deep learning methods extend traditional neural network models with new options and architectures. You also learn how recurrent neural networks are used to model sequence data like time series and text strings, and how to create these models using R and Python APIs for SAS Viya.
Inclus
13 vidéos3 devoirs2 éléments d'application
In this module you learn how to model time series using two popular methods, exponential smoothing and ARIMAX. You also learn how to use the R and Python APIs for SAS Viya to create forecasts using these classical methods and using recurrent neural networks for more complex problems.
Inclus
11 vidéos4 devoirs2 éléments d'application
In this module you learn how convolutional neural networks are used to classify images and how to use the R and Python APIs for SAS Viya to create convolutional neural networks.
Inclus
7 vidéos2 devoirs2 éléments d'application
In this module you learn how factorization machines are used to create recommendation engines and how to build factorization machine models in SAS Viya using the R and Python APIs.
Inclus
4 vidéos2 devoirs2 éléments d'application
Offert par
Recommandé si vous êtes intéressé(e) par Data Analysis
Whizlabs
Coursera Project Network
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Avis des étudiants
Affichage de 3 sur 15
15 avis
- 5 stars
86,66 %
- 4 stars
6,66 %
- 3 stars
0 %
- 2 stars
0 %
- 1 star
6,66 %
Révisé le 18 oct. 2021
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.