The "Social Network Analysis" course offers a comprehensive exploration of the intricate relationships within social networks, emphasizing the theoretical and practical applications of network analysis. Through engaging modules, learners will delve into advanced topics in graph theory, centrality measures, and statistical modeling, equipping them with the skills to analyze and interpret social structures effectively.
Offrez à votre carrière le cadeau de Coursera Plus avec $160 de réduction, facturé annuellement. Économisez aujourd’hui.
Social Network Analysis
Ce cours fait partie de plusieurs programmes.
Instructeur : Ian McCulloh
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Learn to calculate and interpret key centrality measures to identify influential nodes in social networks.
Gain skills in applying statistical models to analyze relationships and dynamics within social networks.
Understand how foundational social theories inform network analysis and shape interpretations of social interactions.
Compétences que vous acquerrez
- Catégorie : Social Theory Application
- Catégorie : Network Construction
- Catégorie : Data Analysis in R
- Catégorie : Statistical Modeling
- Catégorie : Centrality Analysis
Détails à connaître
Ajouter à votre profil LinkedIn
septembre 2024
9 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées
Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable
Obtenez un certificat professionnel
Ajoutez cette qualification à votre profil LinkedIn ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance
Il y a 4 modules dans ce cours
This course explores the intersection of social theories and statistical analysis within social networks, focusing on structural dependence and its implications. Students will engage in hypothesis testing of social forces using empirical data, and will learn to construct networks and model longitudinal behavior with tools such as 'statnet' and 'RSiena.' Key terminology and the hierarchy of social link formation will be emphasized, alongside practical calculations of fundamental graph and network measures like Density and Degree. Additionally, students will differentiate between various network types and centrality measures, equipping them with a comprehensive understanding of social network analysis.
Inclus
1 lecture1 plugin
In this module, you will explore advanced topics in graph theory and centrality measures as applied to social networks. You will learn to identify key influencers, measure network cohesion, and strategize interventions based on network structure and dynamics.
Inclus
6 vidéos2 lectures3 devoirs1 laboratoire non noté
In this module, you will explore Graph Theory and Centrality Measures, delving into the dynamics of social networks. You will also learn to distinguish between the six social forces and understand the hierarchical formation of social links. Discuss foundational social theories that underpin social network analysis, providing insights into how these theories shape organizational networks and societal interactions. This module equips you with essential knowledge to analyze and interpret the intricate relationships within social structures.
Inclus
4 vidéos3 lectures3 devoirs1 laboratoire non noté
In this module, you will explore Network Statistical Methods through a comprehensive study of structural dependence and its impact on statistical analysis. You will also learn to calculate link likelihoods manually and conduct hypothesis testing on social forces using empirical data. You will also gain practical skills in constructing Exponential Random Graph Models (ERGM) using ‘statnet’ in R and modeling longitudinal network behavior with Stochastic Actor Oriented Models (SAOM) using ‘RSiena’.
Inclus
3 vidéos2 lectures3 devoirs1 laboratoire non noté
Instructeur
Offert par
Recommandé si vous êtes intéressé(e) par Algorithms
University of California, Davis
University of Michigan
Johns Hopkins University
Stanford University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?
Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à plus de 7 000 cours de renommée internationale, à des projets pratiques et à des programmes de certificats reconnus sur le marché du travail, tous inclus dans votre abonnement
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.